АВ^2 = АС^2 + СВ^2
400 = 256 + СВ^2
СВ = √144 = 12 (см).
3. S = 1/2 • 16 • 12 = 96 (см^2).
соединим концы хорд
получим четырехугольник
так как хорды параллельные - это вписанная равнобедренная трапеция
обозначим
R - радиус описанной окружности
c - боковая сторона трапеции
h = 42 высота трапеции
a = 36 и b = 48 - Основания
диагонали трапеции равны по теореме Пифагора
d^2 = h^2 + (a+(b-a)/2)^2 = 42^2 +(36 +(48-36)/2)^2 =3528
d = 42√2
боковая сторона
с^2 = h^2 + ((b-a)/2)^2 =42^2 +((48-36)/2)^2=1800
c = 30√2
диагональ(d), нижнее основание(b) и боковая сторона(c) образуют
треугольник , вершины которого лежат на той же описанной окружности
периметр треугольника P = b+c+d = 48+30√2+42√2=48+72√2
полупериметр треугольника p = 24+36√2
тогда радиус описанной окружности по известной формуле
R = (bcd) / 4√(p(p-b)(p-c)(p-d))=
=(48*30√2*42√2) / 4√((24+36√2)(24+36√2-48)(24+36√2-30√2)(24+36√2-42√2))= 30
ответ R=30
1. Берілген нүктелер арқылы өтетін түзудің теңдеуін жазыңыз: А(2;1) В(-1;2). [2 ұпай]
2. Шеңбердің берілген теңдеуі бойынша оның центрінің координаталары мен радиусын табыңыз: (х-4)2 +(у+8)2 =36 [1 ұпай]
3. нүктелері берілген.
a) төбелерінің координаталары бойынша салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [3 ұпай]
c) түрін анықтаңыз (теңқабырғалы, теңбүйірлі, тікбұрышты); [2 ұпай]
d) берілген үшбұрыштың ауданын есептеңіз. [2 ұпай]
4. Төбелері А (1;-1) В (0;1) С (4;3) және Д (5;1) нүктелері болатын төртбұрыштың тіктөртбұрыш болатынын дәлелдеп, оның ауданын табыңыз. Ол үшін:
a) төбелерінің координаталары бойынша сызбасын салыңыз; [1 ұпай]
b) қабырғаларының ұзындықтарын табыңыз; [4 ұпай]
c) диагональдарын анықтап, дәлелдеңіз; [2 ұпай]
d) тіктөртбұрыштың ауданын есептеңіз. [2 ұпай]
памагит
Так как ВС=АD, то трапеция равнобедренная, то есть высоты опущенные к нижнему основанию СD делят трапецию на прямоугольник и два равных прямоугольных треугольника. При этом условии гипотенузы этих треугольников равны 13 СМ. Найдём противолежащий катет: (СD-АВ)/2; (20-10)/2=5 см. По теореме Пифагора найдём высоту трапеции: h^2=13^2-5^2; h^2=144; h=12. Найдём площадь трапеции по формуле: S=(AB+CD)×0,5 ×h; S=0,5 ×(10+20)×12; S=180 см квадратных
Объяснение:
как то так