М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Danielufa
Danielufa
07.12.2022 23:22 •  Геометрия

решить полностью третий столбик.


решить полностью третий столбик.

👇
Открыть все ответы
Ответ:
olardaniil2017
olardaniil2017
07.12.2022
Сторона основания m, диагональ основания m√2
Половина диагонали m√2/2, высота и боковое ребро образуют прям-ный тр-ник с катетом m√2/2 и углом против него α/2.
tg (α/2) = (m√2/2) / H
а) Высота равна H = (m√2/2) / tg (α/2) = m√2*ctg (α/2) / 2
б) Боковое ребро b = (m√2/2) / sin (α/2)
в) Апофема (высота боковой грани) L^2 = b^2 - m^2 = (m^2/2) / sin^2 (α/2) - m^2
L = m*√ [1 - 2sin^2 (α/2)] / sin (α/2) = m*√(cos α) / sin (α/2)
Угол между боковой гранью и плоскостью основания
sin β = H / L = m√2*ctg(α/2) / 2 * sin(α/2) / (m*√(cos α)) = √2*cos(α/2) / (2√(cos α))
г) Двугранный угол при боковом ребре - это не знаю.
4,4(16 оценок)
Ответ:
annaaristova
annaaristova
07.12.2022

Объяснение:

Свойство биссектрисы угла треугольника. Решение треугольников. Вычисление биссектрис, медиан, высот, радиусов вписанной и описанной окружностей. Формулы площади треугольника: формула Герона, выражение площади треугольника через радиус вписанной и описанной окружностей.

Вычисление углов с вершиной внутри и вне круга, угла между хордой и касательной.

Теорема о произведении отрезков хорд. Теорема о касательной и секущей. Теорема о сумме квадратов сторон и диагоналей параллелограмма

Вписанные и описанные многоугольники. Свойства и признаки вписанных и описанных четырехугольников.

Геометрические места точек.

Решение задач с геометрических преобразований и геометрических мест.

Теорема Чевы и теорема Менелая.

Эллипс, гипербола, парабола как геометрические места точек.

Неразрешимость классических задач на построение.

Треугольникомназывается фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинамитреугольника, а  отрезки - его сторонами.

Биссектриса

Биссектриса угла – это луч, который исходит из его вершины, проходит между его сторонами и делит данный угол пополам. Биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.

Свойства биссектрис треугольника

· Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

· Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

· Биссектрисы внутреннего и внешнего углов перпендикулярны.

· Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трех вневписанных окружностей этого треугольника.

· Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

4,4(36 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ