Стороны параллелограмма равны a и b, острый угол равен альфа. Найдите диагонали параллелограмма, если: 1) a =3м, b =2м, альфа = 30°: 2) a = 0.8м, b =0.5м, альфа =45°: 3) a = 3/4м, b = 5/4м, альфа все решить
Расстояние от точки до плоскости h длинная наклонная l₁ = 2√6 см короткая наклонная l₂ Проекции наклонных на плоскость t₁ и t₂ --- h - катет против угла в 30°, равен половине длине большей наклонной h = l₁/2 = √6 см Вторая наклонная - гипотенуза, высота - катет, проекция второй наклонной - второй катет - совместно образуют прямоугольный треугольник, равнобедренный, с углом при основании 45°, и проекция равна высоте h = t₂ Вторую наклонную найдём по теореме Пифагора h² + t₂² = l₂² (√6)² + (√6)² = l₂² 6 + 6 = l₂² 12 = l₂² l₂ = √12 = 2√3 см --- Угол между наклонными равен 90° по условию. И расстояние d между точками касания наклонных с плоскостью по т. Пифагора. d² = l₁² + l₂² d² = (2√6)² + (2√3)² d² = 4*6 + 4*3 d² = 24 + 12 = 36 d = √36 = 6 см
Если речь о прямоугольном треугольнике, то по теореме Пифагора сумма квадратов катетов равна квадрату гипотенузы. Гипотенуза у нас имеет длину 3 см - квадрат 9. Один из катетов корень из 2, то есть квадрат равен 2. 9-2 = 7, то есть второй катет равен корню из 7. Но тогда ни как не пристраивается 45 градусный угол. То есть треугольник не прямоугольный. В условии ошибка. Надо применять теорему косинусов: квадрат стороны равен сумме квадратов двух других сторон минус произведение сторон на косинус угла между ними. Косинус 45 градусов равен 1/корень(2). То есть получается что квадрат искомой стороны = 3*3 + 2 - 3*корень(2)/корень(2) = 9+2-3 = 8. А длина стороны равна 2*корень(2)...
длинная наклонная l₁ = 2√6 см
короткая наклонная l₂
Проекции наклонных на плоскость t₁ и t₂
---
h - катет против угла в 30°, равен половине длине большей наклонной
h = l₁/2 = √6 см
Вторая наклонная - гипотенуза, высота - катет, проекция второй наклонной - второй катет - совместно образуют прямоугольный треугольник, равнобедренный, с углом при основании 45°, и проекция равна высоте
h = t₂
Вторую наклонную найдём по теореме Пифагора
h² + t₂² = l₂²
(√6)² + (√6)² = l₂²
6 + 6 = l₂²
12 = l₂²
l₂ = √12 = 2√3 см
---
Угол между наклонными равен 90° по условию.
И расстояние d между точками касания наклонных с плоскостью по т. Пифагора.
d² = l₁² + l₂²
d² = (2√6)² + (2√3)²
d² = 4*6 + 4*3
d² = 24 + 12 = 36
d = √36 = 6 см