Решение основано на свойстве высоты равнобедренного треугольника.
1) Если точка лежит на отрезке, то проведение перпендикуляра к ней называется восстановление перпендикуляра.
Из точки проводят 2 засечки циркулем на прямой влево и вправо на равном расстоянии.
Затем большим раствором циркуля проводят засечки выше прямой.
Полученная точка принадлежат перпендикуляру к прямой.
Проводим через первую и найденную точки прямую - это и будет перпендикуляр.
2) Если точка не лежит на прямой, то из неё проводим дугу раствором циркуля, пересекающую прямую в двух точках слева и справа.
Из полученных точек проводят 2 засечки с другой стороны прямой.
Получим 2 точки, через них и проводим прямую.
Это и будет перпендикуляр к прямой.
Пусть D, E и F - точки касания вписанной окружности со сторонами треугольника АВС: АС, АВ и ВС соответственно.
Нам дано: АВ=30см, ВF=14см, FC=12см.
Заметим, что ВЕ=ВF=14см, DC=FC=12см, а АЕ=АD как касательные, проведенные из одной точки к окружности.
Тогда АЕ=АВ-ВЕ=30-14=16см, значит АD=16см. DC=FC=12см.
Значит АС=AD+DC=16+12=28см.
Полупериметр треугольника равен: р=(30+26+28):2=42см.
Есть формула для вписанной в треугольник окружности:
r=√[(p-a)(p-b)(p-c)/р], где р - полупериметр, а, b, c - стороны треугольника.
В нашем случае: r=√(12*16*14/42)=√64=8см.
ответ: r=8см.
Или по формуле r=S/p, где S - площадь треугольника.
Площадь найдем по формуле Герона:
S=√[p(p-a)(p-b)(p-c)] или в нашем случае: S=√(42*12*16*14)=√(6*7*2*6*16*2*7)=6*7*2*4=336см².
r=336/42=8см.
ответ: r=8см.
рассмотрим треугольник CДБ , CБ - гипотенуза . ДБ/СБ = 1/2 , ЗНАЧИТ УГЛ СБД = 60, угл САБ = 30 ,ЗНАЧИТ 2 СБ = АБ , значит АБ = 4 ДБ , АД = 3 ДБ