Ума не приложу уже как её решить : с в треугольник авс с прямым углом с вписана окружность с центром о, касающаяся сторон ав, вс и са в точках d, e и f соответственно. известно, что oc= 2 \sqrt{2}. найти: радиус окружности и углы eof и edf.
DOCE - квадрат (т.к. углы D,C,E - прямые), ОС- диагональ, тогда радиус=OE=OC*(кор из2)/2=2 т.к. центр вписанной окр. лежит на пересечении биссектрис, то CO и OF лежат на одной прямой - диаметре, который делит окружность на равные дуги FD и EF, дуги DC и CE, в свою очередь, равны, т.к. OC - биссектриса угла DOE. тогда FD=EF=180-DC=135, угол EOF=135, угол EDF=135/2=67.5 (центральный и вписанный) ответ: r=2, EOF=135, EDF=67.5
Действительно: CB₁/AB₁=BC/BA =14/15 (свойство биссектрисы BB₁ в ΔABC) ⇒ CB₁=14k ,AB₁ =15k ,CA=CB₁+AB₁ =29k ⇒ CB₁/CA =14/29. --- аналогично : A₁P/PA=BA₁/BA =7/15 (свойство биссектрисы BP в ΔABA₁) ⇒A₁P=7m, PA =15m , A₁A=A₁P+PA) =22m ⇒ A₁P/A₁A =7/22.
Таким образом получили: S(A₁PB₁C) =S*14/29 -(S/2)*(7/22). Площадь треугольника вычисляем по формуле Герона : S =√p(p-a)(p-b)(p-c) =√21(21-14)(21-15)(21-13) =√21*7*6*8 = √(7*7*3*3*2*2*4) =7*3*4 =84.
DOCE - квадрат (т.к. углы D,C,E - прямые), ОС- диагональ, тогда радиус=OE=OC*(кор из2)/2=2
т.к. центр вписанной окр. лежит на пересечении биссектрис, то CO и OF лежат на одной прямой - диаметре, который делит окружность на равные дуги FD и EF, дуги DC и CE, в свою очередь, равны, т.к. OC - биссектриса угла DOE. тогда FD=EF=180-DC=135, угол EOF=135, угол EDF=135/2=67.5 (центральный и вписанный)
ответ: r=2, EOF=135, EDF=67.5