Speaking Task 1. Choose the question from the card on the topic Entertainment and fedia^ prime prime and be ready to answer it after the teacher starts the conversation. Produce a speech by giving extended answers to the questions. Share your ideas with the class. Teacher organizes a Socratic seminar, which helps him/her to assess learners while they are speaking on the toplic Entertainment and Media and he/she prepares and cuts down questions and expressions beforehand. Learners sit in a circle and answer the question using in their speech some formal and Informal expressions to present logically connected information to their classmates. Expressions: Stating an opinion The way I see it... Sorry to interrupt, but... Is it okay if I jump in for a second? Can I add something here? Can I throw my two cents in? Not necessarily Interrupting If I might add something..... I beg to differ No, I'm not so sure about that That's for sure Expressing disagreement I'd say the exact opposite I have to side with somebody (name)on this one I was just going to say that In my opinion Expressing agreement If you ask me.. That's exactly how I feel As far as I'm concerned. If you want my honest opinion..... You have a point there That's not always the case
Треугольник PQW не обязательно прямоугольный. По т. синусов для него получаем PW=2R·sin∠Q=20·sin∠Q, а по т. косинусов для него же 20²·sin²∠Q=16²+12²-2·16·12·cos∠Q. Решаем это уравнение, получаем cos∠Q=0 и cos∠Q=24/25. Т.е. в первом случае PQW - действительно прямоугольный (см. рис. 1), а второй случай также существует при выпуклом ABCD (см. рис. 2.)
Т.к. AB/PB=CB/QB=5/4, то треугольник ABC подобен треугольнику PBQ с коэффициентом подобия 5/4, откуда AC=(5/4)·PQ=5*16/4=20 и AC||PQ. Аналогично, треугольник BCD подобен треугольнику QCW с коэффициентом 5, т.е. BD=5QW=5*12=60 и BD||QW, откуда угол между диагоналями ABCD равен углу PQW. Поэтому, площадь ABCD вычисляется по формуле (1/2)AC·BD·sin(∠PQW). Значит, в случае, когда PQW - прямоугольный S(ABCD)=(1/2)·20·60·sin(90°)=600. Во втором случае S(ABCD)=(1/2)·20·60·√(1-24²/25²)=168.
Синус угла М равен 4/5, значит, ОН/МН = 4/5, ОН = 4/5 МН = 12 см, ОМ^2 = МН^2-OH^2 = (15см)^2-(12см)^2 = 225см^2-144см^2 = 81см^2, OM = 9см.