Добра с задачей по геометрии В окружности с центром О радиуса R см проведена хорда АВ, равная 10 см. Эта хорда видна из центра окружности под углом φ, таким, что . Найдите R и расстояние от центра окружности до хорды.
Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB^2=AH^2+HB^2
AB^2=(3sqrt3)^2+3^2
AB^2=27+9
AB^2=36
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
sinangle BAC=frac{BH}{AB}
sinangle BAC=frac{3}{6}
sinangle BAC=frac{1}{2}
По теореме синусов
2R=frac{AB}{sinangle BCA}
2R=frac{6}{sinangle BAC}
2R=frac{6}{0,5}
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Решение: Объём воды в сосуде находится по формуле: V=Sосн.*h- где S - площадь основания; h- уровень воды Из первой формулы h=V : Sосн. S=πR² или: h=V/ πR² Если перелить воду в другой сосуд у которого радиус меньше в 2 раза (R/2) уровень воды равен: h=V : π*(R/2)²=V : π* R²/4=4V/ πR² Вычислим во сколько раз увеличится уровень воды при переливании воды в другой сосуд: 4V/ πR² : V/πR²=4V* πR²/πR²*V=4 (раза) Отсюда уровень воды, равный 15см в другом сосуде увеличится в 4 раза, следовательно в другом сосуде он будет: 15см*4=60см
Здесь следует рассмотреть сечение шара плоскостью, которая делит и шар,и конус таким образом, что все мы наблюдаем как бы в срезе. Смотри рисунок. Используем расширенную теорему синусов, чтобы узнать радиус описанной окружности вокруг треугольника АВС. Заметим, что этот треугольник равнобедренный. АВравно ВС как образующие конуса. Найдем АВ по теореме Пифагора
AB^2=AH^2+HB^2
AB^2=(3sqrt3)^2+3^2
AB^2=27+9
AB^2=36
AB=6 см.
Найдем противолежащий угол ВСА. Он равен углу ВАС.
По теореме синусов нам нужен синус этого угла.
sinangle BAC=frac{BH}{AB}
sinangle BAC=frac{3}{6}
sinangle BAC=frac{1}{2}
По теореме синусов
2R=frac{AB}{sinangle BCA}
2R=frac{6}{sinangle BAC}
2R=frac{6}{0,5}
2R=12
R=6 - радиус описанной окружности вокруг треугольника АВС, и радиус шара описанного вокруг конуса одновременно.
Объем шара находится по стандартной формуле
V=frac{4}{3}pi*R^3
V=frac{4}{3}pi*6^3
V=4pi*6^2*2
V=8pi*36
V=288pi