Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
Дана прямоугольная трапеция ABCD с основаниями AD u BC, угол BAD=90°. AB = 2r В трапецию можно вписать окружность только тогда, когда равны суммы противоположных сторон трапеции ⇒ AB + CD = BC + AD Вписанная окружность касается боковой стороны трапеции в точке Е так, что CE = 4 см, DE = 9 cм ⇒ СD = CE + DE = 4 + 9 = 13 (cм) Свойство прямоугольной трапеции, в которую вписана окружность: Если точка касания делит боковую сторону на известные отрезки m и n, то радиус вписанной окружности равен r = √(mn) r = √(4*9) = √36 = 6 (см) ⇒ AB = 2*6 = 12 (см)
AB + CD = BC + AD 12 + 13 = BC + AD BC + AD = 25 BC = 25 - AD
Опустим высоту CF на основание AD. ABCF - прямоугольник ⇒ ⇒ BC = AF ⇒ BC = AD - DF ⇒ 25 - AD = AD - DF AD + AD - DF = 25 2AD - DF = 25
В прямоугольном треугольнике CDF: CD = 13 cм - гипотенуза СF = AB = 12cм - катет DF - катет
2AD - 5 = 25 2AD = 25 + 5 2AD = 30 AD = 30 / 2 AD = 15 (cм) BC = 25 - 15 = 10 (cм)
Свойство прямоугольной трапеции, в которую вписана окружность: Если в прямоугольную трапецию вписана окружность, площадь трапеции равна произведению ее оснований
Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС:
угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС)
далее возьмем прямоугольный треугольник АНС где АН- высота:
угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30
тогда угол НАС равен
180-90-30=60
АН=2
найдем сторону НС:
по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3=
2 корня из 3
окей, далее найдем АС она же является диагональю трапеции:
АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4
готово, осталось посчитать:
S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате