A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
Sполн = 16(12+√3)/3 см².
Объяснение:
∠АС1С = 30° (по сумме острых углов прямоугольного треугольника).
АС = 4см (катет против угла 30°).
СС1 = 4√3см (второй катет треугольника АС1С).
∠АВО = 60° (диагонали ромба - биссектрисы).
∠АВО = 30° ( второй острый угол - диагонали ромба взаимно перпендикулярны).
ВО = АВ/2 как катет против угла 30°.
АВ = 4√3/3 см; ВО = 2√3/3см (по Пифагору). BD = 4√3/3см.
Sabcd = (1/2)·AC·BD = (1/2)·4·4√3/3 = 8√3/3см².
Sграни = АВ·СС1 = 4√3/3·4√3 = 16см².
S = 2·Sabcd+4·Sграни = 16√3/3 +4·16 = 16(12+√3)/3 см².