Находим векторы АВ и АС.
АВ = (-6; 0; -9), модуль равен √117 ≈ 10,81665383.
АС = (3; -4; -2), модуль равен √29 ≈ 5,385164807.
Площадь треугольника равна половине модуля векторного произведения векторов АВ и АС.
i j k| i j
-6 0 -9| -6 0
3 -4 -2| 3 -4 = 0i - 27j + 24k - 12j - 36i - 0k =
= -36i - 39j + 24k.
Модуль равен √((-36)² + (-39)² + 24²) = √3393 ≈ 58,24946352.
Площадь равна: S = (1/2)√3393 ≈ 29,12473176
.
Объяснение:
Проведем высоты как показано на рисунке. MN=BC=5 (т.к. BCNM - прямоугольник). BM=CN=h Обозначим AM как x, для удобства. AD=AM+MN+ND 20=x+5+ND ND=15-x Для треугольника ABM запишем теорему Пифагора: AB2=h2+x2 202=h2+x2 h2=400-x2 Для треугольника CDN запишем теорему Пифагора: CD2=h2+ND2 252=h2+(15-x)2 625=h2+(15-x)2 Подставляем вместо h2 значение из первого уравнения: 625=400-x2+(15-x)2 625-400=-x2+152-2*15*x-x2 225=152-2*15*x 225=225-30x 30x=0 x=0, получается, что BM совпадает со стороной AB, т.е. AB является высотой трапеции. Тогда площадь трапеции равна: S=AB(AD+BC)/2=20(20+5)/2=10*25=250