1) НВ=22,5
2)АН=60
1)Рассмотрим ΔАВС, ∠С=90°, ∠А=30°., АВ=90
По теореме о сумме острых углов прямоугольного треугольника
∠В=90-∠А=90°-30°=60°.
ВС-катет , лежащий против угла в 30°
ВС=1/2 АВ=45
Рассмотрим ΔВСН, где ∠Н=90°,∠В=60°, ВС=45
По теореме о сумме острых углов прямоугольного треугольника
∠ВНС=90-∠В=90°-60°=30°.
НВ-катет , лежащий против угла в 30°.
НВ=1/2 ВС=22,5
2) Рассмотрим ΔАВС, ∠С=90°, ∠А=30°, АВ=80
По теореме о сумме острых углов прямоугольного треугольника
∠В=90-∠А=90°-30°=60°.
ВС-катет , лежащий против угла в 30°
ВС=1/2 АВ=40
Рассмотрим ΔВСН, где ∠Н=90°,∠В=60°, ВС=40
По теореме о сумме острых углов прямоугольного треугольника
∠ВНС=90-∠В=90°-60°=30°.
НВ-катет , лежащий против угла в 30°.
НВ=1/2 ВС=20
АН=АВ-НВ=80-20=60
1) В четырехугольнике ABCD точки E и F — соответственно середины равных сторон AB и CD . Серединные перпендикуляр к стороне AD пересекает серединный перпендикуляр к стороне BC в точке P . Докажите, что серединный перпендикуляр, проведенный к отрезку EF проходит через точку P .
2) В четырехугольнике ABCD серединные перпендикуляры к сторонамAB и CD пересекаются на стороне AD . Известно, что \angle A = \angle D . Докажите, что в четырехугольнике диагонали равны.
3) В квадрате ABCD даны точки E и F соответственно на сторонах AB и BC ,причем \angle AED = \angle FED . Докажите равенство EF = AE + FC
так???!!!
В треугольнике АВС известны 2 угла,⇒третий угол –∠ВАС=180°-(45°+60°)=75°.
По условию МN║AB, АN при них - секущая. Поэтому накрестлежащие ∠ВАN=∠АNМ. С другой стороны, в ∆ АМN стороны АМ=MN (дано), и по признаку равнобедренного треугольника ∠NAM=∠ANM, из чего следует равенство ∠ВАN=∠NAM.⇒ ∠ВАN=75°:2=37,5°