Повітря з температурою +20 °C й абсолютною вологістю 9,4 г/м опус- кається з висоти 1800 м до висоти 133 м. Визначте температуру повітря після опускання й обчисліть, як змінилася його відносна вологість, Розв'язання:
1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника, а углы, заключенные между этими сторонами равны, то треугольники подобны.
Дано: ∠А = ∠А₁; АВ : А₁В₁ = АС : А₁С₁ . Доказать: ΔАВС подобен ΔА₁В₁С₁. Доказательство: Достроим на стороне АС треугольник АВ₂С, в котором углы, прилежащие к стороне АС, равны углам в треугольнике А₁В₁С₁ (как на рисунке) . Тогда ΔАВ₂С подобен ΔА₁В₁С₁ по двум углам. Запишем отношение сторон в этих треугольниках: АВ₂ : А₁В₁ = АС : А₁С₁. Сравним полученную пропорцию с данной в условии: АВ : А₁В₁ = АС : А₁С₁ Значит, АВ₂ = АВ. Но тогда ΔАВС = ΔАВ₂С по двум сторона и углу между ними (АС - общая, АВ₂ = АВ и ∠А = ∠А₁ = ∠1 по условию). Итак, ΔАВС = ΔАВ₂С, а ΔАВ₂С подобен ΔА₁В₁С₁, значит ΔАВС подобен ΔА₁В₁С₁. Доказано.
1)Площадь параллелограмма 32, тогда одна сторона 32/4=8,
высота 5,(3)=5целых и одна треть=16/3. тогда другая сторона равна
32/(16/3)=32*3/16=6, а периметр (8+6)*2=28
2)Срабатывает свойство - если из одной точки к окружности провести касательные. то отрезки касательных до точек касания равны, если коэффициент пропорциональности равен х, то от бок. сторона треугольника равна 4х+3х=7х.
Т.к. основание равно 6, то 3х+3х=6, откуда х=1, значит, основание 6, боковые обе по 7*1=7, тогда периметр равен 7+7+6=20
Биссектриса прямого угла делит гипотенузу на отрезки, пропорциональные прилежащим сторонам, найдем по теор. Пифагора гипотенузу.
√(3²+6²)=√45=3√5
Если один отрезок гипотенузы, прилежащий к меньшему катету, равен х, то другой, равен (3√5-х)
Составим пропорцию и найдем биссектрису.
3/6=х/(3√5-х), 2х=3√5-х, откуда х=√5
Теперь найдем биссектрису по теореме косинусов. ПУсть она будет в,
тогда 3³+в²-2*3*в*cos45°=(√5)²
9+в²-2*3*√2в/2=5
в²-3√2в+4=0,
ПО теореме, обратной теореме Виета, найдем корни. это в₁=√2 и в₂=2√2