Боковая сторона описанной трапеции видна по углом 90° (свойство). Следовательно, треугольник СОD прямоугольный и его высота ОН, проведенная к гипотенузе CD, является радиусом вписанной окружности. Высота нашей трапеции равна двум таким радиусам. Тогда по Пифагору CD = √(OC²+OD²) = √36+64) = 10 cм.
По свойству высоты из прямого угла:
ОН = R = (OC·OD)/CD = 6·8/10 = 4,8 см.
Также по свойству этой высоты:
ОС² = СD·CH => CH = OC²/CD = 36/10 = 3,6 см.
Аналогично HD = OD²/CD = 6,4 cм.
Пусть точки М и К - точки касания вписанной окружности с основаниями трапеции ВС и AD соответственно.
Тогда ВМ = АК = R = 4,8 см.
МС = СН = 3,6 см, а KD = HD = 6,4см (как отрезки касательных из одной точки).
Равнобедренного может? Если да , то вот . В равнобедренном треугольнике биссектрисы, проведённые к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его биссектрисы. Треугольники AKB и ALB равны по второму признаку равенства треугольников. У них сторона AB общая, углы LAB и KBA равны как углы при основании равнобедренного треугольника, а углы LBA и KAB равны как половины углов при основании равнобедренного треугольника. Так как треугольники равны, их стороны AK и LB - биссектрисы треугольника ABC - равны. Теорема доказана. Теорема d3. В равнобедренном треугольнике высоты, опущенные к боковым сторонам, равны. Доказательство: Пусть ABC - равнобедренный треугольник (AC = BC), AK и BL - его высоты. Тогда углы ABL и KAB равны, так как углы ALB и AKB прямые, а углы LAB и ABK равны как углы при основании равнобедренного треугольника. Следовательно, треугольники ALB и AKB равны по второму признаку равенства треугольников: у них общая сторона AB, углы KAB и LBA равны по вышесказанному, а углы LAB и KBA равны как углы при основании равнобедренного треугольника. Если треугольники равны, их стороны AK и BL тоже равны. Что и требовалось доказать.
Sabcd = 67,62 cм²
Объяснение:
Боковая сторона описанной трапеции видна по углом 90° (свойство). Следовательно, треугольник СОD прямоугольный и его высота ОН, проведенная к гипотенузе CD, является радиусом вписанной окружности. Высота нашей трапеции равна двум таким радиусам. Тогда по Пифагору CD = √(OC²+OD²) = √36+64) = 10 cм.
По свойству высоты из прямого угла:
ОН = R = (OC·OD)/CD = 6·8/10 = 4,8 см.
Также по свойству этой высоты:
ОС² = СD·CH => CH = OC²/CD = 36/10 = 3,6 см.
Аналогично HD = OD²/CD = 6,4 cм.
Пусть точки М и К - точки касания вписанной окружности с основаниями трапеции ВС и AD соответственно.
Тогда ВМ = АК = R = 4,8 см.
МС = СН = 3,6 см, а KD = HD = 6,4см (как отрезки касательных из одной точки).
ВС= ВМ+МС = 4,8+3,6 = 8,4 см.
AD = AK+KD = 4,8+6,4 = 11,2 cм.
Sabcd = (BC+AD)·MK/2 = 19,6·9,6/2 = 67,62 см²