Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Следовательно, четырехугольник, образованный линейным углом данного двугранного угла, лежит в плоскости, перпендикулчрной ребру этого угла, является выпуклым и имеет три угла, равные 100°, 90° и 90°. Так как сумма внутренних углов четырехугольника равна 360°, то искомый угол равен 360° -280° = 80°.
ответ: 80°.
Площадь боковой поверхности призмы находят умножением периметра основания на высоту.
Посколькоу призма правильная, все ребра (их 6) основания имеют одинаковую величину.
24:6=4 см
Высоту призмы найдем из боковой грани.
Диагональ делит грань на два равных прямоугольных треугольника,
в которых один катет - ребро основания.
второй - боковое ребро ( это высота)
и диагональ - гипотенуза.
Можно без вычислений сказать, что высота здесь равна 3 см, так как получившийся треугольник - египетский, с отношением сторон 3:4:5
Но и проверив теоремой Пифагора, мы получим тот же результат:
d²=a²+h² (d - диагональ грани, а- сторона основания, h - высота призмы)
25=16-h²
h²=9
h =3
Площадь боковой поверхности этой призмы равна
S=P*h=24*3=72 cм²