Пусть MO - перпендикуляр, данный по условию, а данный треугольник будет треугольником ABC. Т.к. точка M равноудалена от всех вершин треугольника, то AO=OC=OB из равенства треугольников AOM, BOM и COM(по двум сторонам). Значит O - центр описанной около треугольника ABC окружности. Значит AO=BO=CO - радиусы этой окружности. R = abc/4S, где S - площадь треугольника ABC, a,b и с - его стороны, S найдем по формуле S=√(p(p-a)(p-b)(p-c)), значит R = 24*27*29/√40*16*13*11 (расчеты производить не буду, ибо такие расчеты только под калькулятор). Треугольник AOM прямоугольный, MO = 14 по условию, AO = R, найдем AM - расстояние от M до вершины треугольника ABC. AM = √(14²+R²) = √(196+R²). Угол MAO - угол, образованный этим расстоянием с плоскостью, в которой лежит треугольник ABC. И угол MAO = arcsin(14/AM).
Докажем,что AK=EM Т.к по условию KM и AE диаметры ,то OK=AO=MO=EO(как радиусы),а углы AOK и MOE равны(как вертикальные)=> Треугольники AOK и MOE равны по двум сторонам и углу между ними=>AK=ME Теперь докажем,что треугольники AOM и KOE равны. Углы AOM и KOE равны(как вертикальные),а ОКЕ=АМО и МАО=ОЕК(как накрест лежащие )=>треугольник АОМ равен треугольнику КОЕ по трём углам=>КЕ=АМ,а угол МКЕ равен углу АМК как накрест лежащие Если не нравится доказательство в начале,то можно доказать аналогично тому,что во второй