Перед тем, как решать, сделаю небольшую оговорку. Если идёт речь об угле между каким-то прямыми, то тебе нужно всегда находить иименно ОСТРЫЙ угол. Принимаю, что CM - медиана. Нужно найти <CMB.
1)Воспользуюсь свойством медианы, проведённой к гипотенузе: CM = 1/2AB. Оно в прямоугольном треугольнике всегда работает. AM = MB = 1/2AB - так как CM-медиана. Поскольку CM = 1/2AB, то CM=MB, следовательно, ΔCMB - равнобедренный. <MCB = <B = 47°.
3)Так как сумма углов треугольника равна 180°, то <CMB = 180°-2<B = 180° - 94° = 86° задача готова )
Перед тем, как решать, сделаю небольшую оговорку. Если идёт речь об угле между каким-то прямыми, то тебе нужно всегда находить иименно ОСТРЫЙ угол. Принимаю, что CM - медиана. Нужно найти <CMB.
1)Воспользуюсь свойством медианы, проведённой к гипотенузе: CM = 1/2AB. Оно в прямоугольном треугольнике всегда работает. AM = MB = 1/2AB - так как CM-медиана. Поскольку CM = 1/2AB, то CM=MB, следовательно, ΔCMB - равнобедренный. <MCB = <B = 47°.
3)Так как сумма углов треугольника равна 180°, то <CMB = 180°-2<B = 180° - 94° = 86° задача готова )
Пусть M — точка внутри параллелограмма ABCD, P и Q — её проекции на прямые BC и AD. Тогда
S(MBC) + S(AMD) = BC . MP + AD . MQ =
= AD . (MP + MQ) = AD . PQ,
причём PQ — высота параллелограмма ABCD. Поэтому найденная сумма равна половине площади параллелограмма.
Второй
Через точку M, взятую внутри параллелограмма ABCD, проведём прямые, параллельные сторонам параллелограмма. Эти прямые разбивают параллелограмм на четыре меньших параллеллограмма. Диагонали AM, BM, CM и DM разбивают каждый из этих четырёх параллелограммов на два равных треугольника. Отсюда следует утверждение задачи.