Объяснение:
вы должны рассматривать высоту как катет прямоугольного треунольника. сначала начертите призму . проведите диагональное сечение . потом проведя диагональ самой призмы вы увидите что сечение разбивается на два прямоугольных треугольника .
ABCDA1B1C1D1 призма
BDB1D1 диагональное сечение
BD1 диагональ призмы.
по правилам прямоугольного треугольника если угол=30' то противоположный катет равен половине гипотенузы
по условию задачи гипотенуза это диагональ BD1
а катет равный половине гипотенузы это диагональ основания BD
в основание квадрат =>BD= 4V2 (V корень кв.)
BD1= 2*4V2=8V2
по теореме Пифагора DD1^2=(8V2)^2-(4V2)^2= 96
DD1=4V6
надеюсь правильно
АЕ = ЕС, значит ΔAEC - равнобедренный.
∠ЕАС = ∠ЕСА (свойство равнобедренного треугольника), обозначим их α.
Пусть АВ = а, тогда АС = 2а.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Тогда
ВЕ:ЕС = АВ:АС = 1:2
Пусть ВЕ = х, тогда ЕС = EA = 2х.
В ΔЕАС по теореме косинусов для угла ЕАС:
cosα = (AE² + AC² - EC²)/(2AE·AC)
cosα = (4x² + 4a² - 4x²)/(8ax) = a/(2x)
В ΔВАЕ по теореме косинусов для угла ВАЕ:
cosα = (AB² + AE² - BE²)/(2AB·AE)
cosα = (a² + 4x² - x²)/(4ax) = (a² + 3x²)/(4ax)
(a² + 3x²)/(4ax) = a/(2x)
a² + 3x² = 2a²
a² = 3x²
a = x√3
cosα = a/(2x) = x√3/(2x) = √3/2 ⇒ α = 30°
∠ВСА = 30°
∠ВАС = 2∠ВСА = 60°
∠АВС = 180° - ∠ВСА - ∠ВАС = 90°
ответ: 30°, 60°, 90°.
2,5 см
Объяснение:
Катет лежащий против угла в 30 градусов равен половине гипотенузы