Медиана bm и биссектриса ap треугольника abc пересекаются в точке k, длина стороны ac в трое больше длины стороны ab.найдите отношение площади треугольника abk к площади четырёхугольника kpcm
Угол ОВА=90 градусов (радиус в точке касания перпендикулярен касательной). Секущая АО делит хорду ВС пополам в точке пересечения N и перпендикулярна ей (секущая из одной точки с касательными, проходящая через центр окружности к хорде, соединяющей точки касания). Итак, ВN - перпендикуляр из прямого угла на гипотенузу и равен согласно его свойству, √(ON*AN) =√2*6 =2√3. (NA=AO-NO). Тангенс угла ВОА равен отношению противолежащего катета к прилежащему = ВN/ON = 2√3/6 =√3/3 Значит угол ВОА = 30 градусов, а угол ВОС = 60 градусов. (так как АО - биссектриса углов ВАС и ВОС. Итак, угол ВОС= 60 градусов. Угол ВОС - это центральный угол, опирающийся на дугу ВС. Значит градусная мера этой дуги равна 60 градусам. ответ: градусная мера малой дуги ВС равна 60 градусов. (Если правильно понял условие задачи, что расстояние от центра до хорды равно 6см, а от центра до точки А равно 8см)
Точка М не лежит в плоскости параллелограмма ABCD. Она образует с точками С,D - треугольник MCD, с основанием CD По условию прямая (C'D'), проходит через середины отрезков MC и MD. А это как раз боковые стороны треугольника MCD. Значит C'D' - средняя линия треугольника MCD , следовательно параллельна основанию CD. В параллелограмме противолежащие стороны попарно параллельны, тогда AB || CD , но CD || C'D'. Значит и AB || C'D' ДОКАЗАНО, что прямая, содержащая середины отрезков MC и MD параллельна прямой AB
S(amb)=S(bmc) => S(amb = 1/2 S(abc)
Ak - медиана треугольника AMB, так как BK=KM
S(abk)=S(amk)=1/2 S(abm) = 1/4 S(abc)
Проведем ML параллельно AP
ML - средняя линия ACP (так как ML параллельна AP и AM=MC) =>PL=LC
KP - средняя линия BMP=>PL=PB
PL=LC; PL=PB =>PL=LC=PB
S(bkp)/ S(mbc)= 1/2* sinB * BK* BP/1/2* sinB * BM*BC ( при этом мы знаем, что BK=1/2 BM и BP = 1/3 BC)=> S(bkp)/ S(mbc)=1/6
S(bkp)/ S(mbc)=1/6 => S(cmkp)/ S(mbc)=5/6 => S(cmkp)/ S(abc) = 5/12
S(mbc)/S(cmkp) = 1/4 S(abc)/ 5/12S(abc)= 3/5
P.s решение от krosch5.