@ 319. через гипотенузу АВ равнобедренного прямоугольного треугольника- ка АВС под углом в 45° к его плоскости проведена плоскость расстояния от вершины прямого угла С на (рис. 326). Найдите площадь треугольника АВС[email protected]
Объяснение:
Т.к. проведена " плоскость на расстояния от вершины прямого угла С ", то СС₁⊥ γ ⇒Δ СС₁D-прямоугольный , sin45°=СС₁/DC , ,DС=L√2.
Т.к.ΔАВС-равнобедренный, прямоугольный , то ∠А=∠В=45°⇒ΔACD-равнобедренный ⇒AD=DС=L√2.
И ΔВCD-равнобедренный ⇒ВD=DС=L√2.
Значит АВ=2L√2.
S=1/2*a*h , S(АВС)=1/2*2L√2*L√2=2L² .
б) sin(-2x)=0 <=> sin2x=0 <=> 2x=π*k <=> x=π*k/2, где k∈Z
2) Sin3x+cos7x=0 <=> cos(π/2-3x)+cos7x=0 <=> 2*cos(π/2-3x+7x)/2*cos(π/2-3x-7x)/2=0.
Произведение равно нулю, когда один из множителей равен нулю, значит: а) cos(π/4+2x)=0 <=> π/4+2x=π/2+π*n <=> 2x=π/4+π*n <=> x=π/8+π*n/2, где n∈Z
б) cos(π/4-5x)=0 <=> π/4-5x=π/2+π*s <=> -5x=π/4+π*s <=> x=-π/20-π*s/5, где s∈Z