АС и B1D1 - это скрещивающиеся диагонали противоположных граней (оснований), поэтому расстояние между ними равно высоте призмы (или боковым ребрам).
ВВ1 = 5;
Что касатеся основного вопроса задачи, то ответ лежит на поверхности. Нужно найти угол (косинус) между плоскостями, перпендикулярными ВD1 и ВВ1 (это - плоскость основания :)). Поскольку эти прямые пересекаются в точке В, нужный угол очевидно равен углу D1BB1 - как бы не была расположена плоскость сечения и как бы не был построен искомый линейный угол двугранного угла, его стороны будут перпендикулярны сторонам угла D1BB1 .
Осталось найти диагональ BD1
BD1^2 = 12^2 + 31 + 5^2 = 200; BD1 = 10√2;
cos(угол D1BB1) = В1В/D1B = 5/(10√2) = √2/4;
СD=CD'
Δ СPD' = Δ CPD'' по построению симметричной точки D''⇒
СD'=CD''
СD = CD' = CD''
BС – серединный перпендикуляр к DD' ⇒
BD=BD'
Обозначим
∠ СD'D= ∠ CDD'= α
∠ CD'D'' = ∠ CD''D'= β
Проведем DK ⊥ AC;
DK || D'D''
Δ CDK – прямоугольный равнобедренный треугольник.
∠CDK =∠ KСD=45o
PD'DK – прямоугольная трапеция.
Cумма углов, прилежащих к стороне DD' равна 180o
∠CDK +∠ СDD'+ ∠ DD'C+ ∠ CD'D'' =180o ⇒
45o+ α + α + β =180o ⇒
2 α + β =135o
В прямоугольном треугольнике MD'D''
сумма острых углов равна 90 o
∠ DD'C+ ∠ CD'D'' + ∠ CD''D' =90o ⇒
α + β+β =90o
Решаем систему двух уравнений:
{2 α + β =135o
{α + 2β =90o
Умножаем первое уравнение на 2:
{4α + 2β =270o
{α + 2β =90o
Вычитаем из первого второе
3α=180o
α =60o
Δ СDD' – равносторонний.
BD=BD' ⇒ B – равноудалена от двух вершин равностороннего треугольника, значит равноудалена и от третьей.
BD=BD'=ВС
BD=BC и значит Δ СBD – равнобедренный, что и требовалось доказать.