М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
траппер
траппер
03.07.2022 09:04 •  Геометрия

Вправильной шестиугольной призме abcdefa1b1c1d1e1f1 стороны основания равны 2, а боковые ребра равны 4. n -середина отрезка ас. найдите расстояние от вершины а до плоскости na1d. если можно, то решите координатно-векторным методом

👇
Ответ:
Maci189
Maci189
03.07.2022

Координатный метод. 

(*** некоторые результаты, вроде того, что угол CAD= 30°; -  я привожу без пояснений и "доказательств", предполагается, что вам известны углы между диагоналями и их размеры в правильном шестиугольнике).

Начало координат в точке А, ось X вдоль AD, ось Y в плоскости основания перпендикулярно AD, ось Z - вдоль АА1. Еще я обозначу R = 2 (по смыслу это радиус описанной вокруг шестиугольника окружности). Кроме того, пусть К - проекция точки N на AD.

Плоскость NA1D пересекает ось Х в точке (4, 0, 0) и ось Z в точке (0, 0, 4). 

Кроме этого, она проходит через точку N. 

Координаты точки N (Nx, Ny, 0); Ny = NK равно половине высоты трапеции ABCD,

то есть Ny = (R*√3/2)/2 = √3/2; отсюда Nx = АК = 3/2; (потому что угол CAD равен 30°;) 

Чтобы построить уравнение плоскости NA1D, лучше всего найти координаты точки Q (0, q, 0), в которой прямая DN пересекает ось Y. Это проще, чем высчитывать определитель, задающий уравнение плоскости через координаты точек A1, D и N. 

Треугольники QAD и NKD подобны, поэтому 

AQ/AD = NK/KD; q/4 = (√3/2)/(4 - 3/2); q = 4√3/5;

То есть координаты точки Q (0, 4√3/5, 0); 

Уравнение плоскости A1QD ( она же - плоскость NA1D) теперь записывается автоматически

x/4 + y/(4√3/5) + z/4 = 1;

(если не понятно, как это получается - легко проверить, что точки (4,0,0) (0,4√3/5,0) и (0,0,4) удовлетворяют этому уравнению, а через три точки можно провести только одну плоскость.)

(Примечание. Все предыдущие манипуляции преследовали только одну цель - найти, какой отрезок плоскость отсекает на оси Y.  В общем случае, если известно, что какая-то плоскость отсекает на осях - считая от начала координат, ориентированные отрезки a, b, c - то есть проходит через точки (a,0,0) (0,b,0) (0,0,c), то уравнение плоскости записывается сразу x/a + y/b + z/c = 1). 

Это уравненние можно записать в виде скалярного произведения rp=1; 

r = (x,y,z); это радиус-вектор точки плоскости (то есть его абсолютная величина равна расстоянию от А до точки плоскости).

p = (1/4, 5/4√3, 1/4); 

Теперь задается вопрос "при каком r его длина минимальна?".

В такой постановке сразу ясно, что r коллинеарен (параллелен, пропорционален) p, поскольку при любом другом положении r его длина больше - так как косинус угла между r и p будет меньше 1).

В этом случае rp=1; (абсолютные величины!) и r = 1/p;

То есть для получения ответа осталось вычислить p = IpI;

p = √((1/4)^2 + (1/4)^2 + (5/4√3)^2) = √155/20; а искомое расстояние равно 4√155/31.

проверяйте, может я в числах где ошибся.  

 

Это копия моего решения вот я и тогда не был уверен в числах, и сейчас :)

4,8(93 оценок)
Открыть все ответы
Ответ:
valyakravets
valyakravets
03.07.2022

Дано:

OP=8

Угол OSP=45 градусов

Угол SPK=90 градусов

Угол POS=90 градусов

Сумма углов треугольника 180 градусов, чтобы найти угол OPS нужно из 180 вычесть сумму других (2) углов, 180-(90+45)=45 градусов - угол OPS

Угол OPS = углу OSP следовательно треугольник OPS равнобедренный, у равнобедренного треугольника боковые стороны равны следовательно PO=OS=8

Угол POS и угол POK - смежные, суммы смежных углов равна 180 градусов, 180-90=90 градусов - угол POK

Угол OPS входит в состав угла KPS, а значит 90-45=45 - угол OPK, сумма углов треугольника рана 180 градусов, 180-(90+45)=45 - угол PKO, углы при основание равны значит треугольник равнобедренный, у равнобедренного треугольника боковые стороны равны следовательно PO=KO=8, KS состоит из KO и OS следовательно 8+8=16 - KS

ответ: OS=8, KS=16

Всё расписала, чтобы было понятно что и откуда взялось)

4,5(40 оценок)
Ответ:
prasolovadd
prasolovadd
03.07.2022

В прямоугольном треугольнике АВС найти катет АС и высоту CD , если проекции катетов на гипотенузу АВ равны AD=25см, BD=4см.

Объяснение:

         Если в прямоугольном треугольнике опущена высота на гипотенузу, то каждый из катетов есть среднее пропорциональное между всей гипотенузой и его проекцией на гипотенузу: АС=√(АВ*АD),

AC=√( (25+4)*25)=5√29 (см)

         Если в прямоугольном треугольнике опущена высота на гипотенузу, то высота является средним пропорциональным между проекциями катетов на гипотенузу : CD=√AD*BD ,CD=√(25*4)=10 (см).


Используя чертеж, найти катет АС и высоту CD прямоугольного треугольника, если проекции катетов на г
4,7(85 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ