Точка пересечения диагоналей квадрата является центром квадрата. Т.к. из него проведена перпендикулярная прямая, значит расстояние от т. О до вершин квадрата будет одинаковое. Следовательно, нам нужно найти одно такое расстояние, чтобы знать все.
Стороны квадрата (а) равны. Диагонали у квадрата равные (d), и точка пересечения делит их пополам.
Р-м ΔAOM:
∠O = 90°, AO — половина диагонали, OM — перпендикуляр к плоскости квадрата. АМ — наклонная.
AO = d/2
Ищем, чему равна диагональ квадрата:
AO = (4√2)/2 = 2√2 см
Теперь можем найти длину отрезка AM
ответ: Расстояние равно √33 см, или приблизительно 5,74 см.
Дано: ΔАВС, АВ=1 см, АС=8 см, ∠А=60°. Найти ВС.
По теореме косинусов
ВС²=АВ²+ВС²-2*АВ*ВС*сos60=1+64-2*1*8*1/2=65-8=57
ВС=√57≈7,55 см
Нехай ∠1=х°, ∠2=х°+20, ∠3=х-50°
х+х+20+х-50=180
3х=210
х=70
∠1=70°, ∠2=70+20=90°; ∠3=70-50=20°