DOA = 70°. Дано в задаче.
BOC = DOA = 70°. Вертикальные углы равны (1).
DOC = 180° - 70° - 110°. Смежные углы в сумме дают 180° (2).
AOB = DOC = 110°. (1).
ODC = (180° - 110°) / 2 = 35°. Сумма углов треугольника равна 180° (3). Если треугольник равнобедренный, то углы при его основаниях равны (4).
ADO = 90° - 35° = 55°. Два угла составляют прямой угол (5).
OAD = ADO = 55°. (4).
OAB = 90° - 55° = 35°. (5).
OBA = OAB = 35°. (4).
OBC = 90° - 35° = 55°. (5).
OCB = OBC = 55°. (4).
Все остальные углы состоят из других и их можно посчитать по сумме. Например:
DAB = DAO + BAO = 55° + 35° = 90°.
Дано: треугольникАВС, сторона АВ разделена на 4 части:АО, ОЕ, ЕК. АС=8 см
сторона ВС разделена на 4 части:СО1, О1Е1, Е1К1.
1) ЕЕ1- средняя линия треугольника АВС, следовательно =1/2АС=4см.
2) КК1- средняя линия треугольника ВЕЕ1, следовательно =1/2ЕЕ1=2см
3)в треугольнике ЕЕ1В 2 линии: КК1 и ЕЕ1. Следовательно среднее пропорциональное =2+4/2=3. Значит, ОО1=3*2=6см.