Если окружность вписана в трапецию, то суммы противоположных сторон этой трапеции равны (теорема об описанном четырехугольнике), т.е. сумма оснований равна сумме боковых сторон. Высота этой трапеции равна диаметру окружности, в нее вписанной: 2*12 = 24 см. Большее основание равно 16*2 = 32 см. Сумма оснований равна сумме боковых сторон. Если боковая сторона равна (16 + х), где х - меньший отрезок, и высота 24, то по теореме Пифагора (16 + х)^2 - (16 - x)^2 = 24^2, откуда х = 9, и тогда боковая сторона равна 16 + 9 = 25, и сумма боковых сторон (а значит, и сумма оснований трапеции) равна 25 + 25 = 50 см. Площадь трапеции, равная половине произведения суммы оснований на высоту, равна 50*24/2 = 600 кв. см.
2) Пусть дан треугольник АВС: АВ=ВС, Обозначим АВ=ВС= 5х, тогда высота ВК= 4х. АК=КВ=6 см По теореме Пифагора из прямоугольного треугольника АВК: (5х)²=(4х)²+6² 25х²-16х²=36, 9х²=36,х²=4,х=2 Значит АВ=ВС=10 см. Р=АВ+ВС+АС=10+10+12=32 см.
1) Пусть дан треугольник АВС: АВ=ВС,
Обозначим АС=2х, тогда АВ=ВС=(128-2х):2=64-х АК=ВК=х По теореме Пифагора из прямоугольного треугольника АВК: АВ²=АК²+ВК², (64-х)²=х²+32², 128х=64²-32², 128х=(64-32)·(64+32), 128х=32·96, 4х=96, х=24, значит АС=48 см, АВ=ВС=(128-48)/2=40 ответ. стороны треугольника 40, 40, 48
1. Т.к. АМ = 15 см и СМ = 2 см (по условию), то АС = 17 см.
2. Т.к. треугольник АВС равнобедренный, то АС = АВ = 17 см
3. В треугольнике АВМ
ВМ² = АВ² + АМ²
ВМ² = 17² - 15²
ВМ² = 289 - 225
ВМ² = 64
ВМ = 8
ТЕОРЕМА ПИФАГОРА
4. ВС² = ВМ² + МС²
ДОСЧИТАЙ ПО ФОРМУЛЕ