М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vitlikkushnirp08qv4
vitlikkushnirp08qv4
15.05.2021 22:33 •  Геометрия

Дано:
EF параллельна MN и BC
AE:EM=m:n
EM=MB
Выразить MN через EF и BC​


Дано:EF параллельна MN и BCAE:EM=m:nEM=MBВыразить MN через EF и BC​

👇
Открыть все ответы
Ответ:
TheATN
TheATN
15.05.2021

Такое утверждение, в общем случае, для любого прямоугольного треугольника, не верно.

Теория гласит: «В равнобедренном треугольнике высота,  проведенная к основанию, является медианой и биссектрисой».

Если применить этот факт к прямоугольному треугольнику, то можно утверждать следующее: высота, проведенная к гипотенузе из прямого угла в прямоугольном треугольнике с равными катетами, является медианой и биссектрисой.

ответ: Высота, проведенная к гипотенузе из прямого угла в прямоугольном треугольнике с равными катетами, является медианой и биссектрисой.

4,8(24 оценок)
Ответ:
AC1 - правильная призма.⇒ ABCD - квадрат . АВ = AD =a . DB1 -диагональ призмы.найдём  из Δ DBB1  по т. Пифагора
(DB1)²=(BB1)²+BD²  .  ΔDBB1 - равнобедренный ,прямоугольный., 
∠BDB1 = ∠BB1D =45° . BD найдём  из  ΔABD  BD = √AD²+AB² = √a²+a² =a·√2.      BD= a·√2   BB1 = BD = a√2  ⇒ DB1= √2·(a·√2)²  =  a√2·√2=.2a
DB1=2 a 
б)Угол между диагональю DB1  и боковой гранью - угол между прямой DB1  и  её проекцией АВ1  на плоскость АВВ1А1, т.к  ∠DA ⊥ АВ , АВ ⊆ пл.АВВ1А1. АВ ⊥ АВ1 ⇒ ΔDAB1 -прямоугольный   ⇒ 
sin∠AB1D =AD / DB1 = a / (2 a )= 1/2  ⇒ 
∠AB1D = 30°
в ) Площадь указанного в условии сечения - площадь прямоугольника ADC1B1 :   S = AD· AB1
Из  ΔABB1  AB1 = √AB² + B1B² = √a² + (a√2)²=√3a² = a·√3
4,5(94 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ