Дан тупоугольный треугольник ABC. Точка пересечения D серединных перпендикуляров сторон тупого угла находится на расстоянии 5,3 см от вершины угла B. Определи расстояние точки D от вершин A и C. DA= см.
АО = СО = 9 см ВО = ДО = 5 см АМ = СМ = √(9²+12²) =√(81+144) = √225 = 15 см МС = МД = √(5²+12²) =√(25+144) = √169 = 13 см Расстояния между основаниями? Это как? Стороны и диагонали ромба? AB = BC = СД = АД = √(9²+5²) =√(81+25) = √106 см АС и ВД даны по условию. --- 2 варианта, к сожалению! 1) АС - гипотенуза AO = AC/2 = 7,5 см О - центр описанной окружности треугольника АВС и поэтому АК = ВК = СК = √(7,5² + 8,5²) = √(15² + 17²)/2 = √(225+289)/2 = √514/2 см 2) AB - гипотенуза АВ = √(8² + 15²) = √(64+225) = √289 = 17 см AO = AВ/2 = 8,5 см АК = ВК = СК = √(8,5² + 8,5²) = 8,5√2 см
1) Основание прямой призмы – прямоугольный треугольник с гипотенузой 15см и катетом 12см. Найдите площадь боковой поверхности, если грань содержащая больший катет – квадрат. Решение. По Пифагору найдем второй катет основания призмы: √(15²-12²)=√(27*3)=9см. Следовательно, больший катет равен 12см и высота призмы равна 12см (так как боковая грань - квадрат 12х12 - дано). Площадь боковой поверхности призмы равна Sб=P*h, где Р - периметр, а h - высота призмы. Sб=36*12=432см².
2) Ребро правильного тетраэдра равно а. Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2, и проходящей параллельно ребру АВ. Решение. Условие для однозначного решения не полное. Во-первых, не понятно условие "Постройте сечение плоскостью, проходящей через ребро АС и делящее его в отношении 1:2". Проходящее - содержащее это ребро или пересекающее его? Раз сечение делит ребро в отношении 1:2, значит плоскость пересекает это ребро и делит его в отношении 1:2, но считая от какой вершины? Во вторых, таких сечений может быть бесконечное множество, так как плоскость, параллельная прямой АВ, может пересекать тетраэдр в любом направлении. Например, параллельно грани АВS (сечение MNP) или проходящее через точку Q на ребре AS (сечение MQDN). Причем линия пересечения грани АSB и плоскости сечения будет параллельна ребру АВ. Вывод: однозначного решения по задаче с таким условием нет.
ВО = ДО = 5 см
АМ = СМ = √(9²+12²) =√(81+144) = √225 = 15 см
МС = МД = √(5²+12²) =√(25+144) = √169 = 13 см
Расстояния между основаниями? Это как? Стороны и диагонали ромба?
AB = BC = СД = АД = √(9²+5²) =√(81+25) = √106 см
АС и ВД даны по условию.
---
2 варианта, к сожалению!
1) АС - гипотенуза
AO = AC/2 = 7,5 см
О - центр описанной окружности треугольника АВС и поэтому
АК = ВК = СК = √(7,5² + 8,5²) = √(15² + 17²)/2 = √(225+289)/2 = √514/2 см
2) AB - гипотенуза
АВ = √(8² + 15²) = √(64+225) = √289 = 17 см
AO = AВ/2 = 8,5 см
АК = ВК = СК = √(8,5² + 8,5²) = 8,5√2 см