Пусть SO - высота пирамиды, тогда АО, ВО и СО - проекции боковых ребер на плоскость основания, а углы SAO, SBO и SCO - углы наклона боковых ребер к основанию и равны 45°. Тогда ΔSAO = ΔSBO = ΔSCO по катету (общий SO) и острому углу.
Значит АО = ВО = СО, значит О - центр описанной около АВС окружности.
Стоит запомнить: Если боковые ребра пирамиды равны или наклонены под одним углом к основанию, то высота проецируется в центр окружности, описанной около основания.
Так как треугольник АВС равнобедренный, О лежит на высоте ВН, проведенной к основанию. ВН является и медианой: АН = 2.
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
ВН = √(АВ² - АН²) = √(5 - 4) = 1, ⇒
sin∠BAH = BH / AB = 1/√5
По следствию из теоремы синусов:
2R = BC / sin∠BAH = √5 / (1/√5) = 5
R = 5/2 = 2,5, т.е. ВО = 2,5
ΔSBO прямоугольный с углом 45°, значит равнобедренный:
SO = BO = 2,5
V = 1/3 Sосн · SO = 1/3 · (1/2 AC · BH) · SO
V = 1/3 · 1/2 · 4 · 1 · 2,5 = 5/3 куб. ед.
Так как ВО больше ВН, центр описанной около треугольника АВС окружности лежит вне треугольника. Чертеж пришлось уточнить.
2. Если боковые ребра пирамиды равны, то высота проецируется в центр окружности, описанной около основания. О лежит на высоте ΔАВС, так как он равнобедренный.
1) Четырехугольник ADEC - трапеция (DE ║ AC). ∠BAC = ∠BCA ⇒ трапеция равнобедренная, значит, AD = CE = BA - BD = 6. В трапеции ∠ВАС = ∠BCA ⇒ и ∠ADE = ∠CED. ΔADE = ΔCED по двум сторонам и углу между ними (AD = CE, DE - общая, ∠ADE = ∠CED). 2) AD║CF, AC║DF ⇒ ADFC - параллелограмм, значит, ∠DAC = ∠CFE. ∠ACE = ∠FEC как накрест лежащие углы при пересечении AC║DE секущей СЕ. Значит, ΔECF подобен ΔАВС по двум углам. 3) Т.к. ΔECF подобен ΔАВС, то EF/AC = CE/BC EF/10 = 6/13 ⇒ EF = 60/13 4) Пусть h - высота треугольника АВС, опущенная на боковую сторону. Тогда Sabc = 13h/2 = √(p(p - a)(p - b)(p - c), где a, b, c - стороны треугольника АВС, р - его полупериметр 13h/2 = √(18 · 5 · 5 · 8) 13h/2 = √(9 · 2 · 5 · 5 · 4 · 2) = 3 · 5 · 4 = 60 h =120/13 5) AC║DF, значит, расстояние от точки А до DE и от точки С до DF одинаковы, т.е. ΔADE и ΔDCF имеют одинаковые высоты, опущенные к основаниям DE и DF соответственно. Значит, площади этих треугольников относятся как длины этих оснований. Sade/Sdcf = DE/DF DF = AC = 10 как противолежащие стороны параллелограмма, DE = DF - EF = 10 - 60/13 = 70/13 Sade/Sdcf = (70/13) / 10 = 7/13
1. SABC - пирамида, АВ = ВС = √5, АС = 4.
Пусть SO - высота пирамиды, тогда АО, ВО и СО - проекции боковых ребер на плоскость основания, а углы SAO, SBO и SCO - углы наклона боковых ребер к основанию и равны 45°. Тогда ΔSAO = ΔSBO = ΔSCO по катету (общий SO) и острому углу.
Значит АО = ВО = СО, значит О - центр описанной около АВС окружности.
Стоит запомнить: Если боковые ребра пирамиды равны или наклонены под одним углом к основанию, то высота проецируется в центр окружности, описанной около основания.
Так как треугольник АВС равнобедренный, О лежит на высоте ВН, проведенной к основанию. ВН является и медианой: АН = 2.
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
ВН = √(АВ² - АН²) = √(5 - 4) = 1, ⇒
sin∠BAH = BH / AB = 1/√5
По следствию из теоремы синусов:
2R = BC / sin∠BAH = √5 / (1/√5) = 5
R = 5/2 = 2,5, т.е. ВО = 2,5
ΔSBO прямоугольный с углом 45°, значит равнобедренный:
SO = BO = 2,5
V = 1/3 Sосн · SO = 1/3 · (1/2 AC · BH) · SO
V = 1/3 · 1/2 · 4 · 1 · 2,5 = 5/3 куб. ед.
Так как ВО больше ВН, центр описанной около треугольника АВС окружности лежит вне треугольника. Чертеж пришлось уточнить.
2. Если боковые ребра пирамиды равны, то высота проецируется в центр окружности, описанной около основания. О лежит на высоте ΔАВС, так как он равнобедренный.
ВН - высота и медиана, ⇒ АН = СН = АВ/2 = 3 см.
ΔАВН: ∠АНВ = 90°, по теореме Пифагора
АВ = √(ВН² + АН²) = √(81 + 9) = √90 = 3√10 см.
sin∠BAH = BH/AB = 9/(3√10) = 3/√10
По следствию из теоремы синусов:
2R = BC / sin∠BAH = 3√10 / (3/√10) = 10
R = 10/2 = 5 см, т.е. ВО = 5 см
ΔSOB: ∠SOB = 90°, по теореме Пифагора
SO = √(SB² - BO²) = √(169 - 25) = √144 = 12 см
V = 1/3 Sосн · SO = 1/3 · (1/2 AC · BH) · SO
V = 1/3 · 1/2 · 6 · 9 · 12 = 108 см³