Так как плоскость АВ₁С₁ пересекает параллельные плоскости по параллельным прямым, то проводим DC₁||AB₁
Плоскость АВ₁С₁ - это плоскость АВ₁С₁D По теореме Пифагора DC₁²=6²+8²=100 DC₁=10 РК- средняя линия треугольника DCC₁ PK=5
PT|| AD и PT || ВС РТ=4
AD⊥CD ⇒ РТ⊥СD AD⊥DD₁ ⇒ РТ⊥ DD₁
РТ перпендикулярна двум пересекающимся прямым плоскости DD₁C₁C, значит перпендикулярна любой прямой лежащей в этой плоскости, в том числе прямой РК РТ⊥ РК Аналогично, МТ ⊥МК Сечение представляет собой прямоугольник Р(cечения)=Р( прямоугольника ТМКР)=2·(4+5)=18
Объяснение:
1. Р = 18см.
2 АС = 30/(√3+1) м.
Объяснение:
Площадь треугольника равна (1/2)·a·b·Sinα, где a и b - стороны треугольника, а α - угол между этими сторонами. В нашем случае
а = 3х, b = 8x, Sinα = √3/2. Тогда
(1/2)·24х²·(√3/2) = 6√3 => x = 1 см.
Имеем две стороны треугольника: 3см и 8см.
По теореме косинусов находим третью сторону:
Х = √(3²+8²- 2·3·8·Cos60) = √49 = 7см.
Периметр треугольника равен 3+8+7 = 18см.
2. По теореме синусов в треугольнике АВС:
АС/Sinβ = AB/SinC.
∠C = 180 - 60 - 45 = 75°. Sin75° = Sin(45+30). По формуле
Sin(45+30) = Sin45·Cos30 + cos45·Sin30 = (√6+√2)/4.
Тогда АС = АВ·Sinβ/SinC = (30·√3/2)/((√6+√2)/4). или
АС = 60/((√6+√2) = 60/(√2(√3+1)) = 30/(√3+1) м.