Соединим точку с концами диаметра. Получим прямоугольный треугольник с меньшим катетом 30 см. Примем проекцию хорды на диаметр за х. Радиус будет тогда х+7. Высота делит треугольник на два,тоже прямоугольных. В прямоугольном треугольнике справедливы следующие соотношения:1) h² = a₁· b₁;2) b² = b₁ · c;3) a² = a₁ · c,где b₁ и a₁ - проекции катетов b и a на гипотенузу сПрименим первое отошение и приравняем его к квадрату высоты из треугольника с хордой и ее проекциея.h²=x(x+14) h²=30²-x² x(x+14)=30²-x² x²+14х=900 -x²2x²+14х-900=0x²+7х-450=0Решаем уравнение через дискриминант.D = 1849√D = 43Уравнение имеет 2 корня. x 1=18,x 2= -25 ( не подходит). Радиус окружности равен18+7=25 см
а) Соединим А с точкой М АМ - ортогональная проекция КМ, KM перпендикулярна BC, поэтому по теореме о трех перпендикулярах АМ перпендикулярна ВС Рассмотрим треугольника АВМ и АМС: они прямоугольные, ВМ=МС, поэтому они равны по двум катетам. Отсюда следует, что АВ=АС б) прямая ВС перпендикулярна КМ и АМ - двум пересекающимся прямым плоскости АКМ,поэтому перпендикулярна и самой пл-ти. Плоскость (KBC) проходит через перпендикуляр к плоскости (КАМ) => (KBC) перпендикулярна пл-ти (KAM) в) Найти площадь ABC,если угол BKC=60 градусов, BC=6 см, KA= 3 корня из 2 Рассмотрим треугольникb КВМ и КМС: они прямоугольные (KM перпендикулярна BC), ВМ=МС, поэтому они равны по двум катетам. Отcюда ВК=СК, а тогда с учетом угла в 60 градусов треугольник ВКС равносторонний и ВК=СК=6. ВМ=3 Тогда легко найти КМ Из треугольника АКМ по теореме Пифагора Находим АМ Тогда площадь треугольника АВС =(1/2)ВС*АМ
130°
Объяснение:
180-110=70
180-70-60=50
180-50=130