2)
sinA =5,25/14 (геом определение синуса)
x/sinA =2*8 (т синусов) => x =16*5,25/14 =6
3)
x+3 =y+2 (описанный ч-к) => y-x=1
Диагональ по т косинусов; cos120= -0,5; cos60=0,5
x^2 +y^2 +xy =9 +4 -2*3*2*0,5 =7
(x-y)^2 =7 -3xy => 1 =7 -3xy => xy=2
(x+y)^2 =7 +xy =9 => x+y=3
4)
sinB =sin(45+30) =√2/2 *√3/2 + √2/2 *1/2 =(√6 +√2)/4
2/sin45 =AC/sinB (т синусов) => AC =2√2(√6 +√2)/4 =√3 +1
√k +1 =√3 +1 => k=3
5)
AB=a, AD=b
P =2(a+b) => a+b =9
S =ab sinA => ab =20
a^2 +b^2 =(a+b)^2 -2ab =81-40 =41
cosA = −√(1-sinA^2) = −3/5 (тупой угол)
BD^2 =a^2 +b^2 -2ab*cosA (т косинусов) =41 +40*3/5 =65
Відповідь:
108 см
Пояснення:
Дано:АВСD- прямокутна трапеція, ВС=24см, AD=34 см, АС- бісектриса ∠А
Знайти : Р-?
Рішення
Так як АD║ВС( основи трапеції ), то ∠DАС=∠АСВ, як внутрішні різносторонні кути при січній АС.
А так як за умовою задачі ∠ВАС=∠DАС, то Δ АВ С- рівнобедрений з основою АС( кути при основі рівнобедреного Δ рівні- властивість), отже АВ=ВС=24см.
Опустимо висоту СН⊥АD. Так як ∠А=∠В=90°, відповідно АВ⊥ АD, то АВ║СН, чотирикутник АВСН- квадрат зі стороною 24см.
Отже НD= АD-АН=34-24=10(см)
Розглянемо ΔСНD, де ∠Н=90°, НD=10см, СН=24см
За теоремою Піфагора
СD²=10²+24²=100+576=676(см²)
СD=√676=26(см)
Р= 24+24+26+34=108 (см)