Могут ли две различные плоскости иметь только две общие точки? а)никогда б)могут на дополнительных условиях в) всегда имеют г)нельзя ответить на этот вопрос
Не могут. Так как если плоскости имеют общую точку, то они пересекаются или совпадают. Если пересекаются, то по прямой, значит, общих точек бесконечное множество, если совпадают, то все точки общие.
Из точки а к плоскости проведены перпендикуляр ао и две равные наклонные ав и ас.известно,что вс=во.найдите углы треугольника вос.решение а /| \ в / | \с оав=асвс=воесли две стороны во и вс равны, значит со=вс=во(только у меня получилось, угол вос=180 град, но по факту 60 град)из этого следует, что всо - треугольник равностороннйи, а значит углы равны 60 град
Пусть диагонали будут АВ, СД. О- точка пересечения Воспользуемся свойствами диагоналей ромба "Диагонали в точке пересечения делятся пополам" и "Диагонали ромба перпендикулярны (образуют прямой угол)" Из этого следует , что диагонали делят ромб на 4 прямоугольных треугольника с катетами равными половине диагоналей. Первый катет такого треугольника = 10/2 =5 см Второй = (10√3)/2= 5√3см По т. Пифагора найдем гипотенузу(сторону ромба) с²=5²+(5√3)² с²=25+75 с=√(100) с=10см Вспомним свойство прямоугольного треугольника " напротив угла в 30* лежит катет равный половине гипотенузы" катет в 5 см равен половине гипотенузы 10 см. Свойство острых углов в прямоугольном треугольнике - их сумма равна 90* Отсюда найдем второй острый угол 90*-30*=60* Также диагонали ромба являются биссектрисами углов. Это значит, что найденные углы равны половине градусных мер углов ромба . Первый угол =30*2=60* Второй угол=60*2=120* Ромб имеет по паре равных углов. ответ: 60*,60*,120*,120*.