если угол с=90 градусов.то синус в=косинус а.Известно, что cosA в квадрате +sinA в квадрате=1.значит синус в=косиусу а=корню квадратному из 1- синус а в квадрате=корню из 1-9/10.Значит синус в=0,1
Две точки, которые лежат на кругах разных основ цилиндра соединены отрезком. Найти его длину, если радиус равен 10 см, высота - 17 см, расстояние от оси к отрезку 4 см ------ Уточним, что данные две точки, которые лежат на кругах разных основ цилиндра, расположены на окружностях, ограничивающих эти круги, а расстояние от оси к отрезку 4 см - это расстояние от оси цилиндра до отрезка 4 см.
Сделаем рисунок, назовем данный отрезок АВ. АВ и ось цилиндра ОО1 - скрещивающиеся прямые, т.к. не параллельны и не пересекаются. Расстояние между скрещиваюимися прямыми - это расстояние между одной из этих прямых и параллельной ей плоскостью, проходящей через другую прямую. Проведем параллельно ОО1 плоскость, содержащую АВ. Для этого из А и В проведем к противоположным основаниям перпендикуляры АС и ВД. Соединим все четыре точки. АС=ВД= высоте цилиндра =17 см АДВС - прямоугольник, т.к. основания цилиндра параллельны и углы ДВС, АСВ=90º по построению.. АВ лежит в получившейся плоскости как диагональ этого прямоугольника. Расстояние от прямой ОО1 до параллельной ей плоскости измеряют перпендикуляром. Проведем из центра О перпендикуляр к хорде ВС. ВН=НС по свойству радиуса и хорды. Из прямоугольного треугольника ОНВ найдем длину НВ по т.Пифагора: ВН²=ВО²-ОН²=100-16=84 ВН=√84 BC=2 BH=2√84 Из прямоугольного треугольника АВС по т. Пифагора найдем АВ: АВ²=ВС²+АС²=4*84+289=625 АВ=√625=25 см
№1 Рассмотрим треугольники MON и KOF, в них NO=OF (по условию), MO=OK (т.к. NO - биссиктриса), угол MON= углу FOK (как вертикальные), значит треугольники равны (по двум сторонам и углу между ними) №2 Рассмотрим треугольники ABP и CBQ, в них AP=QC (по условию), AB=BC (по условию), угол BAP= углу BCQ (в равнобедренных треугольниках углы при основании равны), следовательно треугольники ABP и CBQ равны. Из равенства треугольников берем равенство соответственных сторон BP и BQ, следовательно треугольник BPQ равнобедренный т.к. BP=BQ
если угол с=90 градусов.то синус в=косинус а.Известно, что cosA в квадрате +sinA в квадрате=1.значит синус в=косиусу а=корню квадратному из 1- синус а в квадрате=корню из 1-9/10.Значит синус в=0,1