Вправильной четырехугольной призме abcda1b1c1d1 сторона основания равна 20, а боковое ребро 7.точка м принадлежит ребру a1d1 и делит его в отношении 2: 3 считая от вершины. найдите площадь сечения этой призмы проходящей через точки b,d,m.
Прежде чем рассматривать 6 угольник. Давайте рассмотрим 4 угольник. Чуть позже объясню почему. (рисунок 1) Соединим середины сторон 4 угольника ABCD. Проведем диагональ AC Очевидно что MN-средняя линия треугольника ABC,откуда MN||AC, также PQ-cредняя линия треугольника ACD ,то PQ||AC. То выходит что MN||PQ. Анологично при проведении другой диагонали докажем что MQ||NP. То MNPQ-параллелограмм. Рассмотрим наконец 6 угольник проведем в нем диагональ D (2 рисунок) Она бьет его на 2 четырехугольника. На ней отметим точку S,являющуюся серединой диагонали. То из выше сказанного A1A2A3S-параллелограмм. Понятно , что для точек A1 A2 A3 cуществует одна и только одна точка H, для которой A1A2A3H-параллелограмм. А значит точка H совпадает с точкой S. H=S Тк второй такой точки не существует. Рассуждая анологично для второго 4 угольника. Покажем что M=S. А значит формально говоря: H=M ЧТД.
Хорошо, сведем задачу к нахождению диагонали трапеции т.к. есть формула S= d^2/2 * sinA где d- диагональ, синус угла 60 у нас есть он равен 1/2* корень из 3. Диагонали в равнобедр. трапеции образуют собой равнобедр. треугольники AOD и BOC рассмотри треугольник ВОС: угол ВОС равен 180- 60= 120, тогда углы при основании равны по 30 (углы ОСВ и ОВС) далее возьмем прямоугольный треугольник АНС где АН- высота: угол АСН мы нашли он равен совпадающему углу ОСВ и равен 30 тогда угол НАС равен 180-90-30=60 АН=2 найдем сторону НС: по формуле НС = АН*tgА= 2* tg HAC= 2 * tg 60 = 2* корень из 3= 2 корня из 3 окей, далее найдем АС она же является диагональю трапеции: АС= НС/sin НАС= 2 корня из 3/ ( 1/2* корень из 3) = 4 готово, осталось посчитать: S = АС^2 /2 * sin 60= 8* корень из 3 /2 = 4 корня из 3 см в квадрате
вложение *************************************