Около конуса описана сфера(сфера содержит окружность основания конуса и его вершину). центр сферы совпадает с центром основания конуса.образующая конуса равна 50 корень из 2.найти радиус сферы. !
1 В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°. 2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD. , как катет лежащий против угла 30 в треугольнике BMC. 3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом Тогда в ромбе 4 треугольник AMD равносторонний, , тогда Треугольник BAM равнобедренный, АВ=АМ, тогда 5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4. Тогда ВС=AD=7, АВ=CD=3, периметр .
1 В равнобокой трапеции ABCD: AB=CD= 2d, BC= 5d, AD= 7d. Проведем СК параллельно АВ, тогда АК=ВС=5, АВ=СК=2d, ΔCKD равносторонний CK=CD=KD=2d, уголD=60°, угол А=углуD=60°, угол В=углуС=180°-60°=120°. 2 В параллелограмме биссектриса СР угла BCD образует равнобедренный треугольник PCD () , как катет лежащий против угла 30 в треугольнике CHD. , как катет лежащий против угла 30 в треугольнике BMC. 3 В ромбе ABCD биссектриса CH угла DCA образует два равных прямоугольных треугольника ACH и DCH, при этом Тогда в ромбе 4 треугольник AMD равносторонний, , тогда Треугольник BAM равнобедренный, АВ=АМ, тогда 5 , треугольник MCD равнобедренный, MD=CD=3, , , как накрест лежащие при параллельных прямых АВ и CD, треугольник NAM равнобедренный, AM=AN=4. Тогда ВС=AD=7, АВ=CD=3, периметр .
Высота конуса перпендикулярна основанию и равна радиусу сферы. Тогда по теореме Пифагора получаем