М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
020910
020910
14.06.2022 22:00 •  Геометрия

з точки кола проведено хорди довжиною 7 і 8 см. кінці цих хорд сполучено відрізком, що стягує дугу 120. Обчисліть довжину цього відрізка, якщо він і точка лежать по один бік від центра кола.

👇
Ответ:

13см

Объяснение:

Пусть АВ=7см, ВС=8см. По условию дуга АВС=120°, значит дуга АС, на которую опирается вписанный угол ABC будет равна 360-120=240°. Значит этот вписанный угол <ABC=240/2=120°.

По теореме косинусов в треугольнике АВС найдём сторону АС:

АС²=АВ²+ВС²-2*AB*BC*cosАВС=7²+8²-2*7*8*cos120°=49+64-2*7*8*(-1/2)=169

AC=13см


з точки кола проведено хорди довжиною 7 і 8 см. кінці цих хорд сполучено відрізком, що стягує дугу 1
4,6(15 оценок)
Открыть все ответы
Ответ:
shams200108
shams200108
14.06.2022

Обозначим :

Н - высота пирамиды

h - высота основания пирамиды

r -радиус окружности, вписанной в основание

а - сторона основания

Решение

а) высота пирамиды Н = L· sinβ

б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.

в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =

 = 2√3 · L·cosβ

г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.

Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β

д) Площадь боковой поверхности пирамиды

Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ

e) площадь полной поверхности пирамиды:

Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =

= 3√3 · L² · cosβ · (cosβ + 1)

Подробнее - на -

4,8(56 оценок)
Ответ:
мария564384
мария564384
14.06.2022

Из точки О построим  перпендикуляры ОК, ОН, ОК к прямым АВ, ВС и АС.

Треугольники ОВК и ОВН прямоугольные и равны, так как гипотенуза ОВ у них общая, а угол ОВН = ОВК, так как ВО биссектриса, тогда ОК = ОН.

Аналогично треугольник ОСН = ОСМ, а тогда ОМ = ОН.

Следовательно ОК = ОН = ОК, а значит через точки К, Н, С можно провести окружность с центром в точке О.

Треугольники АКО и АМО прямоугольные, у которых ОК = ОМ как радиусы окружности, АО общая гипотенуза, тогда треугольники равна по катету и гипотенузе. Следовательно, угол КАО = МАО, а АО биссектриса угла ВКМ и ВАС, что и требовалось доказать.

4,6(45 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ