Первая задача на применение теоремы Пифагора. В ней есть перпендикуляр, равный 6см и проекция наклонной, равная 8см, наклонная ищется так √(6²+8²)=√(36+64)=√100=10/см/.
Решение второй задачи сводится к следующему.
М- середина АС, значит, ВМ- медиана ΔАВС, но она проведена к основанию АС равнобедренного треугольника АВС, значит, является и высотой, т.е. ВМ⊥АС, по условию МQ⊥ВМ.
Значит, прямая ВМ перпендикулярна двум пересекающимся прямым плоскости АQC, конкретнее, MQ и AС,
и по признаку перпендикулярности прямой и плоскости, т.е.
если прямая перпендикулярна к двум пересекающимся прямым, лежащим в одной плоскости, то она перпендикулярна к этой плоскости.
ВЫВОД. ВМ⊥ (АQC), доказано.
PS рисунком 19 я только что воспользовался, решая эту же задачу, см. ниже ответ.
1. Вещество. Физ. Материя, вещество, заполняющие определенную часть пространства; отдельный предмет в пространстве. Твердые тела. Жидкие тела. Законы падения тел. Небесные тела (планеты, звезды). □ Два тела не могут в физическом мире занимать одно и то же место. Пушкин, Пиковая дама. || Мат. Часть пространства, ограниченная со всех сторон. Геометрические тела. Тела вращения.
2.Вещество́ — одна из форм материи, состоящая из фермионов или содержащая фермионы наряду с бозонами; обладает массой покоя, в отличие от некоторых типов полей, как например электромагнитное. Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе — атомы (атомное вещество), из которых — молекулы, кристаллы и так далее
3.Диффу́зия — процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого вещества, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выровненную концентрацию и говорят о диффузии одного вещества в другом.
отрезки касательных к окружности проведенные из одной точки равны и составляют равные углы с прямой проходящей через эту точку и центр окружности, значит МА=МВ. расстояние от точки M до хорды AB равное 9 есть перпендикуляр МН к хорде АВ, угол АМН=ВМН. НА=НВ=0,5АВ. Пусть АН=НВ=х. По теореме Пифагора МА=√x^2+81, MO=9+√400-x^2. Площадь треугольника МАО равна половине произведения его катетов МА и МО а также поделив пополам произведение гипотенузы на высоту к гипотенузе MO * AН / 2. составляем и приравниваем выражения для площади:√(x^2 + 9^2) * 20 = (9 +√(20^2 - x^2)) * x
Как икс нашли
раскрываем скобки, возводим обе части в квадрат
400 (x^2 + 81) = 81 x^2 + 18 x^2 sqrt(20^2 - x^2) + 400x^2 - x^4
400 x^2 - 81 x^2 - 400 x^2 + x^4 + 32400 = 18 x^2 sqrt(20^2 - x^2)
x^4 - 81 x^2 + 32400 = 18 x^2 sqrt(20^2 - x^2)
Снова возводим в квадрат
x^8 - 162*x^6 + 71361*x^4 - 5248800*x^2 + 1049760000 =129600*x^4 - 324* x^6
x^8 + 162 x^6 - 58239 x^4 - 5248800 x^2 + 1049760000 = 0
(x^4 + 81*x^2 - 32400)^2 = 0
Теперь уже решается биквадратное уравнение
t^2 + 81 t - 32400 = 0
t1,2 = (-81 +- sqrt(6561 + 4*32400))/2 = (-81 + - 369)/2
Отрицательный корень отбрасываем
t = 144
x = +- 12 Отрицательный корень снова не нужен
x = 12
AB =2x=24