Даны три отрезка: АС - основание треугольника, ВС - одна из его сторон, ВН - высота треугольника. Нужно построить треугольник АВС.
Построение.
Проведем две полуокружности равного радиуса с центрами на произвольной прямой а так, чтобы они пересеклись по обе её стороны. Через точки пересечения проведем прямую. Она перпендикулярна первой ( такой построения перпендикуляра к прямой является стандартным).
Отметим точку пересечения построенной прямой с прямой а буквой Н. Эта точка – основание высоты. От Н отложим отрезок НВ длиной, равной длине заданной высоты.
Из В как из центра радиусом, равным длине заданной стороны ВС, проведем полуокружность до пересечения с прямой а. Отметим т.С - вторую вершину искомого треугольника.
От т.С отложим отрезок СА, равный длине основания.
Соединим точки А, В, С. Искомый треугольник АВС построен.
Два ПОДОБНЫХ, но НЕРАВНЫХ треугольника имеют две пары РАВНЫХ сторон.
Эти стороны, естественно, не соответственные, то есть в подобных треугольниках АВС и ХYZ, если сторона АС=9, то соответственная ей сторона XZ=6см, а стороне АВ=6см соответствует сторона XY. Стороне же ВС соответствует сторона YZ=9см. (Так как стороны одного треугольника ОБЯЗАТЕЛЬНО должны быть БОЛЬШЕ соответственных сторон другого - они же ПОДОБНЫЕ).
Тогда коэффициент подобия треугольников будет равен АС/XZ=9/6=3/2. Найдем оставшиеся стороны из подобия треугольников:
АВ/XY=3/2 или 6/XY=3/2, отсюда XY=4см
ВС/YZ=3/2 или ВС/9=3/2, отсюда ВС=13,5см.
ответ: стороны аервого треугольника АВ=6см, ВС=13,5см, АС=9см.
Соответственные стороны другого (подобного) треугольника равны
XY=4см, YZ=9см, XZ=6см.