Внутренний диаметр резинового шланга для полива равен 3 см внешние 3,5 см а длина 20 м Сколько литров воды он вмещает? Найдите массу этого шланга если плотность резины 7 г/см³
Объяснение: 1литр=1дм³
1) Геометрической моделью шланга является цилиндр , объём воды будет равен объёму цилиндра с внутренним радиусом r=1,5 см .
V(цилиндра)= π*r²*h .
Тк 1литр=1дм³ , то переведем 1,5см=0,15 дц, 20м=200дц. Тогда
V(цилиндра)= π*0,15²*200≈ 3,14*4,5≈14,13 ( л).
2) Масса шланга m=ρ*V . Найдем объём шланга , как разность между объёмами цилиндров с внутренним и внешним радиусами :
V(шланга)=V(внеш)-V(внут)=π*1,75²*h-π*1,5²*h= π*h*(1,75²-1,5²)=
= π*h*(1,75- 1,5)*(1,75+1,5)=π*h*0,25*3,25≈3,14*2000*0,25*3,25≈5102,5 (см³)
m=7*5102,5=35 717,5 (г)≈35,7175(кг)≈36 (кг)
Номер 1
Треугольники равны по 1 признаку равенства треугольников-по двум сторонам и углу между ними
АО=ОС;DO=OB; по условию задачи
<АОВ=<DOC,как вертикальные
Равенство треугольников доказано,следовательно,равны соот ветствующие углы и соответствующие стороны
<АВО=<ОDC=37 градусов
Номер 2
Треугольники равны по 1 признаку равенства треугольников-по двум сторонам и углу между ними
ВС=ОD;<CBD=<BDA;по условию задачи
ВD-общая сторона
Равенство треугольников доказано,поэтому
<ВDC=<ABD=66 градусов
Номер 4
Треугольники равны по 3 признаку равенства треугольников-по трём сторонам
NP=MK;MN=KP;по условию задачи
NK-общая сторона
Равенство треугольников доказано
Объяснение:
7. 15 см.
8. 2√3 см.
Объяснение:
7. Две стороны треугольника равны 3 и 5 см, а угол между ними равен 120*. Найдите периметр треугольника.
Решение.
найдем третью сторону треугольника "по двум сторонам и углу между ними":
Пусть a=5 см, с=3 см. Угол В = 120*. cos 120* = -1/2;
Сторона b равна
b=√a²+c² - 2ac*cosB=√5²+3²-2*5*3(-1/2) =√25 + 9 + 15= √49=7 см.
Периметр равен
Р=a+b+c=3+5+7 = 15 см.
***
8. Решение.
В равностороннем треугольнике все стороны равны, а углы равны по 60*.
Радиус описанной окружности равностороннего треугольника вычисляется по формуле:
R = a/√3 = 6/√3=6√3/3=2√3 см.