По определению, функция является четной (нечетной) если её область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x)=f(x) ( для нечетности : f(-x)=-f(x)).
у=sinx - нечетная функция, область определения х- любое, sin(-x)=-sinx y=tgx- нечетная функция, область определения х-любое, кроме х=(π/2)+πk, k∈ Z. tg(-x)=-tgx
Область определения суммы (разности ) двух функций- пересечение областей определения входящих в сумму (разность) функций. Поэтому область определения данной функции х- любое, кроме х=(π/2)+πk, k∈ Z. f(-x)=sin(-x)-tg(-x)=-sinx-(-tgx)=-sinx+tgx=-(sinx-tgx)=-f(x). О т в е т. функция нечетная.
Диагонали равнобедренной трапеции равны, поэтому oc: ao=ob: do=2: 5 и, так как ∢boc=∢aod, то δaod∼δboc (по второму признаку подобия треугольников: две стороны одного треугольника пропорциональны двум сторонам другого и углы, лежащие между этими сторонами равны). 2. так как δaod∼δboc, то adbc=aooc=52. из этого соотношения выражаем и вычисляем большее основание трапеции ad: ad=5×bc2=5×122=30 см. 3. вычисляем ae: ae=ad−bc2=30−122=182=9 см. 4. так как δabe — прямоугольный треугольник, то находим боковую сторону ab по теореме пифагора: ab=be2+ae2−−−−−−−−−−√=122+92−−−−−−−√=144+81−−−−−−−√=225−−−√=15 см. 5. находим периметр равнобедренной трапеции abcd: p(abcd)= 2×ab+ad+bc=2×15+30+12=72 см.
Обозначь расстояние,которое нужно найти ОH, ОН перпендикулярна МN. Угол НМО=углу ОМК (МО-биссестриса).Угол МНО=УГЛУ ОКМ=90 градусов,т.к ОН-перпендикуляр. Треугольник МНО подобен треугольникуМОК,а в подобных треугольниках МО:МО=НО:ОК, отсюда ОН/9=1 ОН=9.
2)Раз по гипотенузе и острому углу,то тр-к-прямоугольный.Строим прямой угол,на одной его стороне отмечаем точку,из этой точки откладываем острый угол и цир- кулем откладываешь гипотенузу до пересечения со 2 стороной.
3) Проводим прямую,на ней ставим точку.Из этой точки откладываешь угол 150 градусов.
f(-x)=f(x) ( для нечетности : f(-x)=-f(x)).
у=sinx - нечетная функция,
область определения х- любое,
sin(-x)=-sinx
y=tgx- нечетная функция,
область определения х-любое, кроме х=(π/2)+πk, k∈ Z.
tg(-x)=-tgx
Область определения суммы (разности ) двух функций- пересечение областей определения входящих в сумму (разность) функций.
Поэтому область определения данной функции
х- любое, кроме х=(π/2)+πk, k∈ Z.
f(-x)=sin(-x)-tg(-x)=-sinx-(-tgx)=-sinx+tgx=-(sinx-tgx)=-f(x).
О т в е т. функция нечетная.