Рисунок к задаче простой, сделать его сумеет каждый. Пусть этот прямоугольник АВСД, ВД - диагональ. АВ=а АД - длинная сторона прямоугольника Перпендикуляры из А и С делят диагональ на части ВК и КД. Пусть ВК равна х, тогда КД=2х, а ВД=3х Треугольник АВД прямоугольный. АК в нем - высота. АВ и АД - катеты Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и отрезком гипотенузы, заключенным между катетом и высотой. АВ=а а²=ВК*ВД а²=х*3х 3х²=а² АД²=КД*ВД=2х*3х АД²=2*3х² 3х²=а² ( см. выше) АД²=2а² АД=а√2
расстояния от точки до прямой получаем:
x0 + x0 − 4 √
√ = 2 2,
2
|x0 − 2| = 2.
Отсюда x0 = 0 или x0 = 4. Таким образом, за точку C мы можем взять
начало координат C (0, 0). Легко теперь составить уравнение двух сторон
ромба:
AC : 3x − y = 0,
BC : x − 3y = 0.
Две другие стороны BD и AD параллельны AC и BC соответственно и
проходят через точки A (1, 3) и B (3, 1). Поэтому:
BD : 3(x − 3) − (y − 1) = 0, 3x − y − 8 = 0,
AD : (x − 3) − 3(y − 1) = 0, x − 3y + 8 = 0.
Рисунок 1 иллюстрирует решение задачи.
правильно посматри