1) Для решения данной задачи воспользуемся тем, что сечение цилиндра - квадрат и оно параллельно оси цилиндра, тогда сторона данного сечения равна высоте цилиндра и равна 12 см.
2) Значит, расстояние от оси цилиндра до секущей плоскости рано длине перпендикуляра, проведённого от центра основания цилиндра до стороны сечения, лежащем на данном основании
3) Смотрите вложение
Для решения задач по стереометрии остро необходимо умение строить на рисунке сечения многогранников (например, пирамиды, параллелепипеда, куба, призмы) некоторой плоскостью. Дадим несколько определений, поясняющих, что такое сечение:
Секущей плоскостью пирамиды (призмы, параллелепипеда, куба) называется такая плоскость, по обе стороны от которой есть точки данной пирамиды (призмы,
параллелепипеда, куба).
Сечением пирамиды (призмы, параллелепипеда, куба) называется фигура, состоящая из всех точек, которые являются общими для пирамиды (призмы, параллелепипеда, куба) и секущей плоскости.
Секущая плоскость пересекает грани пирамиды (параллелепипеда, призмы, куба) по отрезкам, поэтому сечение есть многоугольник, лежащий в секущей плоскости, сторонами которого являются указанные отрезки.
Для построения сечения пирамиды (призмы, параллелепипеда, куба) можно и нужно построить точки пересечения секущей плоскости с ребрами пирамиды (призмы, параллелепипеда, куба) и соединить каждые две из них, лежащие в одной грани.
Рассмотри круговое основание цилиндра. Центр круга обозначим О. Пусть сечение пересечёт окружность основания в точках А и В. Расстояние ОА = R = 10см. Пусть сечение находится на расстоянии ОС от центра О. Чтобы сечение представляло собой квадрат, необходимо, чтобы АВ = Н = 12см, соответственно, отрезок АС, являющийся половиной АВ, равен половине высоты, т.е. АС =6см.
Найдём расстояние ОС по теореме Пифагора:
ОС² = ОА² - АС² = 10² - 6² = 100 - 36 = 64
ОС = 8(см)