Можно. Медиана прямоугольного треугольника к гипотенузе равна её половине и делит исходный на два равнобедренных.
Так как углы равнобедренных треугольников равны, проще всего делить равнобедренный прямоугольный треугольник. Сумма его острых углов 90°, и каждый равен 45° ( см. рис. 1).
Другой случай - медиана, проведенная из прямого угла, делит исходный на остроугольный и тупоугольный с вершиной на гипотенузе. . Тупоугольный треугольник можно разделить на 3 равнобедренных, два крайних при этом будут между собой равны. (см. рис.2). Равные углы окрашены в одинаковые цвета. Доказать, что эти треугольники равнобедренные, наверняка сможете без труда.
Дано: ΔАВС и ΔА₁В₁С₁.
АВ = А₁В₁, АС = А₁С₁, ∠А = ∠А₁.
Доказать: ΔАВС = ΔА₁В₁С₁.
Доказательство:
Наложим треугольники друг на друга так, чтобы угол А совпал с углом А₁.
Тогда совпадут и лучи АВ с А₁В₁ и АС с А₁С₁.
Так как АВ = А₁В₁, точки В и В₁ совпадут.
Так как АС = А₁С₁, точки С и С₁ тоже совпадут.
Через две точки можно провести единственную прямую, поэтому совпадут и отрезки ВС и В₁С₁.
Так как треугольники совпали при наложении - они равны.
При доказательстве признака использована аксиома: через любые две точки можно провести единственную прямую