М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kirmakcim553
kirmakcim553
19.04.2023 09:03 •  Геометрия

Втреугольнике авс медианы ад и се образуют со стороной ас углы, в сумме 60 градусов. найти площадь треугольника авс , если произведения этих медиан равно корень из 3.

👇
Ответ:
anastasiabojko5
anastasiabojko5
19.04.2023

Пусть o-точка пересечения медиан, Угол AOC=180-60=120

Площадь трапеции AEDB=1/2*AD*EC*sin(120)=3/4

т.к ED Средняя линия, то она делит площадь ABC 1/3 считая от вершины B

Значит S(BED)=1/3*3/4=1/4

S(ABC)=3/4+1/4=1

4,4(51 оценок)
Открыть все ответы
Ответ:
azimova0113
azimova0113
19.04.2023

ответ: 5√4,32

Объяснение: проведём высоту к стороне 5 см. У нас получился прямоугольный треугольник, при котором угол равен 60° и прилежащая сторона 2,4. Верхний угол прямоугольного треугольника, который образовала высота равен: 180-90-60=30°. Катет, который лежит напротив угла 30° = половине гипотенузы. Гипотенуза 2,4. Поэтому 2,4÷2=1,2. Это первый катет. Теперь найдём высоту. По теореме Пифагора: 2,4(в квадрате)-1,2(в квадрате)=√4,32. Теперь найдём площадь: S=5×√4,32=5√4,32

Вы можете извлечь корень, у меня сейчас нет такой возможности

4,4(68 оценок)
Ответ:
milanasadykovaMilok
milanasadykovaMilok
19.04.2023

Пусть имеем искомый треугольник ABC, в котором AB=14, BC=22. Из вершины B проведем медиану BM, BM=12. Необходимо найти величину стороны AC.

Обозначим АС=2x, тогда AM=CM=x, т.к. M - середина AC ( BM - медиана). По свойству медианы, она делит треугольник на два равновеликих треугольника (треугольники, у которых равны площади). Поскольку BM - медиана в треугольнике ABC, то S(ABM)=S(CBM) по вышеописанному свойству.

1). По формуле площади треугольника Герона имеем:

S(ABM)=√p*(p-AB)*(p-BM)*(p-AM), где p - полупериметр треугольника ABM;

p=(AB+BM+AM)/2=(14+12+x)/2=7+6+0,5*x=13+0,5*x;

Тогда, S(ABM)=√(13+0,5*x)*(13+0,5*x-14)*(13+0,5*x-12)*(13+0,5*x-x)=√(13+0,5*x)*(0,5*x-1)*(0,5*x+1)*(13-0,5*x);

Используя формулу разности квадратов, можем привести к следующему виду:

S(ABM)=√(169-0,25*x²)*(0,25*x²-1);

2). Аналогично, S(CBM)=√p*(p-MB)*(p-MC)*(p-BC), где p - полупериметр треугольника CBM;

p=(MB+MC+BC)/2=(12+x+22)/2=6+11+0,5*x=17+0,5*x;

Тогда, S(CBM)=√(17+0,5*x)*(17+0,5*x-12)*(17+0,5*x-x)*(17+0,5*x-22)=√(17+0,5*x)*(0,5*x+5)*(17-0,5*x)*(0,5*x-5);

Используя формулу разности квадратов, можем привести к следующему виду:

S(CBM)=√(289-0,25*x²)*(0,25*x²-25);

3). Т.к. по вышедоказанному S(ABM)=S(CBM), то подставив полученные вычисления, получаем:

√(169-0,25*x²)*(0,25*x²-1)=√(289-0,25*x²)*(0,25*x²-25);

Возведем обе части в квадрат:

(169-0,25*x²)*(0,25*x²-1)=(289-0,25*x²)*(0,25*x²-25);

42,25*x²-0,0625*x²-169+0,25*x²=72,25*x²-0,0625*x²-7225+6,25x²;

42,5*x²-169=78,5x²-7225;

36*x²=7056;

x²=196;

x=±14, но так как x - это величина стороны, то (-14) - посторонний корень;

4). АС=2x=2*14=28, что и требовалось найти;

ответ: AC=28.


Две стороны треугольника равны 14 и 22. медиана, проведенная к третьей стороне равна 12 см. найдите
4,8(16 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ