1. Докажите, что равнобедреная трапеция Авсд и прямоугольник MBKД, изображенные на рисунке, равновеликие и равносоставленные
Объяснение:
Дано:
АВКD - Четырехугольник
⏢АВСD - Трапеция
▯МВКD - Прямоугольник
АВСD и МВКD - ?
Дан четырёхугольник АВКD
Опустим высоту СЕ⊥AD
ΔАВМ = ΔСКD = ΔЕСD
1. Равновеликие фигуры - фигуры, которые имеют одинаковую площадь.
1) ⏢АВСD = ΔАВМ + ΔЕСD + ☐МВСЕ
2) ▯МВКD = ΔЕСD + ΔСКD + ☐МВСЕ ⇒ ⏢
АВСD и ▯МВКD - имеют общий ☐МВСЕ и попарно одинаковые прямоугольные треугольники Δ ⇒ площадь ⏢АВСD и площадь ▯МВКD равны ⇒ РАВНОВЕЛИКИЕ
2. Две фигуры называются равносоставленными, если они могут быть разделены на одинаковое число попарно равных фигур.
Так как ⏢АВСD и ▯МВКD имеют один ☐МВСЕ и попарно одинаковые прямоугольные треугольники, у ⏢АВСD ΔАВМ = ΔЕСD, у ▯МВКD ΔЕСD = ΔСКD, то они равносоставленные
ответ: ⏢АВСD и ▯МВКD равновеликие и равносоставленные
Блин я не знаю ответа на №2 :(
Если где-то ошибка, то пишите в комменты (исправлю)
Найлем для начало стороны AB=√(8-4)^2+(2-6)^2 =√ 16 +16=2√8CD=√(-2-4)^2+(-1+3)^2 =√36+4 =√40 BC=√(4-8)^2+(-3-2)^2=√16+25=√41AD=√(-2-4)^2+(-1-6)^2=√36+49=√85 на рисунке можно видеть что это трапеция выходит, можно раздлить эту трапецию на два треугольника затем найти площадь каждой и суммировать Площадь треугольника S=ab/2*sinaнайдем угол между АВ и AD через скалярAB {4;-4}AD{-6;-7}cosa=4*-6+ 4*7 / √32*85 = 4/√2720теперь sina=√1-16/2720=52/√2720теперь площадь S= 52/√2720 * √2720/2 = 26 теперь площадь другого треугольника опять угол B (8; 2), C (4; -3), D (-2; -1) ВС={-4;-5} CD={-6;2} cosa= 24-10/√1640 = 10/√1640 sina = √1-100/1640 = √1540/1640 S=√41*40/2 * √1540/1640 =√1540/2 = √385 S=√385+26 площадь искомая
Вопрос №1:
1. Докажите, что равнобедреная трапеция Авсд и прямоугольник MBKД, изображенные на рисунке, равновеликие и равносоставленные
Объяснение:
Дано:
АВКD - Четырехугольник
⏢АВСD - Трапеция
▯МВКD - Прямоугольник
АВСD и МВКD - ?
Дан четырёхугольник АВКD
Опустим высоту СЕ⊥AD
ΔАВМ = ΔСКD = ΔЕСD
1. Равновеликие фигуры - фигуры, которые имеют одинаковую площадь.
1) ⏢АВСD = ΔАВМ + ΔЕСD + ☐МВСЕ
2) ▯МВКD = ΔЕСD + ΔСКD + ☐МВСЕ ⇒ ⏢
АВСD и ▯МВКD - имеют общий ☐МВСЕ и попарно одинаковые прямоугольные треугольники Δ ⇒ площадь ⏢АВСD и площадь ▯МВКD равны ⇒ РАВНОВЕЛИКИЕ
2. Две фигуры называются равносоставленными, если они могут быть разделены на одинаковое число попарно равных фигур.
Так как ⏢АВСD и ▯МВКD имеют один ☐МВСЕ и попарно одинаковые прямоугольные треугольники, у ⏢АВСD ΔАВМ = ΔЕСD, у ▯МВКD ΔЕСD = ΔСКD, то они равносоставленные
ответ: ⏢АВСD и ▯МВКD равновеликие и равносоставленные
Блин я не знаю ответа на №2 :(
Если где-то ошибка, то пишите в комменты (исправлю)
Удачи в учёбе :)