Проведём высоту ВД=АВ*cos30=4*0,866=3,46. Из точки М проведём к АС высоту МЕ. Получим два прямоугольных подобных треугольника ДВС и ЕМС(поскольку у низ по условию ВМ=МС). МЕ параллельна ВД и проходит через середину ВС следовательно это средняя линия треугольника ДВС. Отсюда МЕ=ВД/2=1,73. И ДЕ=ЕС. Косинус угла АМЕ равен cos аме=МЕ/AM=1,73/(корень из 19)=0,3967. Отсюда угол =66гр. 24 мин. Синус этого угла равен =0,92. Отсюда АЕ=АМ*sinАМЕ=4,36*0,92=4. АС=АЕ+ЕС=4+2=6.(поскольку ДЕ=ЕС=АЕ-АД=4-2=2). Отсюда площадь треугольника S=1/2*АС*ВД=1/2*6*3,46=10,38.
1) Прямоугольный параллелепипед описан около цилиндра. радиус основания которого равен 4. а высота 5. Найти объем параллелепипеда
Все грани прямоугольного параллелепипеда -прямоугольники. Основания вписанного цилиндра - окружности, вписанные в основания параллелепипеда, а его высота является и высотой параллелепипеда.
Если в прямоугольник вписана окружность - этот прямоугольник - квадрат.
Стороны основания параллелепипеда равны диаметру оснований цилиндра.
а=2r=8
Объем прямоугольного параллелепипеда равен произведению его трех измерений.
V=S*H=8*8*5=320 (единиц объема)
----------------------
2) Радиус основания конуса равен 15, расстояние от центра до образующей равно 12. Найти площадь боковой поверхности конуса.
формула площади боковой поверхности конуса
S=πRL
Расстояние от центра основания до образующей - в данном случае высота прямоугольного треугольника ВОС, образованного высотой ВО конуса, радиусом ОС и образующей ВС (она же гипотенуза треугольника ОВС)
∆ ОНС - египетский ( отношение катета и гипотенузц 3:5). Значит, НС=9 ( можно найти по т.Пифагора)
ОС - катет ∆ ОВС.
Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу.
. ОС²=ВС*НС
225=ВС*9
ВС=225:9=25
S=π*15*25=375 (ед. площади)
-----------------------------
В ΔABC: AC=BC=13, sin ∠A=12/13. Hайти АВ
СН- высота ∆ АВС
АВ=2 АН
АН=АС*cos A
cos A=√(1-(12/13)² )=5/13
AH=5
АВ=5*2=10
Решение и объяснение на фото