Прямоугольный треугольник имеет один угол = 90 °, а два других угла являются острыми. Допустим, что меньший из этих двух острых уголов =Х °. Поскольку по условию задачи сказано, что один из острых углов на 50% больше второго, значит второй угол в 2 раза больше первого (поскольку 50% величины это половина от 100%) и этот второй острый угол =2Х°. Сума всех углов любого треугольника =180° Значит сума углов нашего треугольника =180° Выходит, х+2х+90°=180° 3х=180°-90° 3х=90° х=30° - величина первого острого угла. Значит величина второго острого угла = 2Х°=2*30°=60°
ответ: острые угли прямоугольного треугольника равны 30° и 60°
Пусть дана окружность с центром О и в нее вписан треугольник ABC. Соединим центр окружности О с вершинами A и B треугольника, а также опустим высоту ОE на сторону AB с центра окружности. Рассмотрим треугольник OEB, OE перпендикулярна AB, то есть угол OEB – прямой, OB=R (радиусу вписанной окружности) и OE=R/2 (по условию). Тогда по теореме Пифагора (EB)^2=(OB)^2-(OE)^2=R^2-R^2/4=3R^2/4 EB=R*sqrt(3)/2 Рассмотрим треугольник AEO. Он равен треугольнику OEB, поскольку AO=OB=R и OE- общая сторона. Тогда и AE=R*sqrt(3)/2, а значит AB=AE+EB= R*sqrt(3)/2+ R*sqrt(3)/2=R*sqrt(3) Поскольку в равносторонем треугольнике сторона равна R*sqrt(3), то и наше утверждение доказано
Доказательство:
1 По условию MT∩СК = Р, Р - середина каждого из отрезков, тогда МСТК - параллелограмм по признаку.
2. По свойству противолежащие стороны параллелограмма равны, тогда МС = ТК, что и требовалось доказать.
(Использован следующий признак:
Если в четырехугольнике диагонали пересекаются и точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.)