10 см - меньшая сторона.
14 см - большая сторона.
Объяснение:
"Периметр прямоугольника 48 см. Найдите стороны прямоугольника, если одна из них на 4 см больше другой."
***
Пусть меньшая сторона прямоугольника равна x см. Тогда большая сторона равна x+4 см.
Периметр определяем по формуле:
P=2(a+b), где a=x см, а b=(x+4) см. Р=48 см.
2(х+х+4)=48;
2x+4=24;
2x=20;
а=x=10 см - меньшая сторона.
b=x+4=10+4=14 см - большая сторона.
Проверим:
2(10+14)=2*24=48 см - все верно.
***
На украинском:
Відповідь:
10 см-менша сторона.
14 см-велика сторона.
Пояснення:
"Периметр прямокутника 48 см. знайдіть сторони прямокутника, якщо одна з них на 4 см більше іншої."
***
Нехай менша сторона прямокутника дорівнює x см. тоді велика сторона дорівнює x + 4 см.
Периметр визначаємо за формулою:
P=2(a+b), де a=x см, а b=(x+4) см. р=48 см.
2 (х+х+4)=48;
2x+4=24;
2x=20;
а=x=10 см-менша сторона.
b=x + 4=10+4=14 см - велика сторона.
Перевірити:
2(10+14)=2*24=48 см - все вірно.
В треугольнике против большей стороны лежит больший угол.
Доказательство:
Пусть в ΔАВС АВ > ВС. Докажем, что ∠С > ∠А.
Отложим на стороне АВ отрезок ВК = ВС. Так как АВ > ВС, то точка К будет лежать между точками А и В, тогда угол 1 будет частью угла С:
∠1 < ∠С.
∠2 - внешний для ΔАСК, а внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Тогда ∠2 = ∠А + ∠АСК, т.е.
∠2 > ∠А.
И еще ∠1 = ∠2 как углы при основании равнобедренного треугольника ВСК. Получаем:
∠А < ∠2 < ∠C, значит
∠А < ∠С
Обратная теорема: В треугольнике против большего угла лежит большая сторона.
Доказательство:
Пусть в треугольнике АВС ∠С > ∠A. Докажем, что АВ > ВС.
Предположим, что АВ < ВС. Тогда по доказанной теореме ∠С должен быть меньше ∠А. Это противоречит условию. Значит предположение неверно, АВ > ВС.
1) 180-90-37=53°
2 рис1. треугольники прямоугольные, катеты равны