Площадь ромба равна половине произведения его диагоналей. Диагонали ромба взаимно перпендикулярны и делятся в точке пересечения пополам. В четвертинке ромба, образованного половинами диагоналей - прямоугольном тр-ке гипотенуза = стороне ромба = 25см, один катет (меньший) равен Х, а больший равен Х+5 (так как разность диагоналей равна 10, то разность их половин -5). По Пифагору Х²+(Х+5)²=25² или 2Х²+10Х-600=0 или Х²+5Х-300=0 Решаем квадратное ур-е и получаем: Х=(-5+√(25+1200))/2 = (5+35)/2 =20см Отрицательное значение Х нас не устраивает. Значит диагонали ромба равны 40см и 50см. Итак, площадь ромба равна 1/2(40*50) = 1000см²
Мы знаем, во-первых, теорему Пифагора: a^2 + b^2 = c^2, где a,b - катеты, c - гипотенуза. В нашем случае, раз треугольник равнобедренный, то a=b и теорема примет вид: a^2 + a^2 = c^2 2 * a^2 = c^2 Во-вторых, мы знаем выражение для площади прямоугольного треугольника: S = 1/2 * a * b (частный случай формулы площади в общем виде, где S = 1/2 * a * h). Зная, что a = b, площадь примет вид: S = 1/2 * a * a = 1/2 * a^2 Сопоставляя первое и второе выражения, видим, что c^2 = 4 * S Отсюда, подставляя имеющееся значение: c^2 = 4 * 50 = 200 c = корень из 200 = 2 * (корень из 10)
∠АВД=∠СВД=∠В/2=80/2=40°.
Углы АВД, СВД, АСД и САД опираются на дуги АД и СД, значит все они равны 40°.
В тр-ке АДС ∠АСД=∠САД=40°, ∠АДС=180-40-40=100° - это ответ.