ответ:Медиана в равнобедренном треугольнике (она делит основание пополам) является еще высотой(перпендикуляр к основанию) и биссектрисой(делит угол из которого опущена на два равных угла)
Треугольники АВК и ВКС равны между собой по второму признаку равенства треугольников-если сторона и два прилежащих к ней угла одного треугольника равны стороне и двум прилежащим к ней углам другого треугольника,то эти треугольники равны между собой
У них общая сторона ВК
Угол АКВ равен углу ВКС и каждый из них равен 90 градусов
Равны также углы АВК и КВС-биссектриса поделила угол В на два равных угла
И если один треугольник имеет периметр 24 см,то и у второго такой же периметр
Периметр-это сумма всех сторон
У двух маленьких треугольников есть в наличии сторона ВК,а в большом ее нет,поэтому из периметров маленьких треугольников надо вычесть величину стороны ВК ,сложить,что получилось и это будет периметр треугольника АВС
(24-8)+(24-8)=16+16=32 см
Периметр треугольника АВС 32 см
Объяснение:
Объяснение:
Обозначим данный по условию треугольник АВС, АВ = 36 см, ВС = 29 см, АС = 25 см. Высота СН делит сторону АВ на отрезки ВН = х см, и АН = 36 – х см.
Высота СН разделила треугольник АВС на два прямоугольных треугольника: ВСН и АСН. В каждом из них запишем СН по теореме Пифагора.
CH² = AC² - AH² = 25² – (36 – x)² = 625 – 1296 + 72x – x² = 72x – x² - 671
CH² = BC² - BH² = 29² - x² = 841 – x².
Получаем уравнение:
72x – x² - 671 = 841 – x²
72х = 1512
х = 21 (см) – отрезок ВН.
CH = √(BC² - BH²) = √(841 – 441) = √400 = 20 (см).
ответ: высота СН равна 20 см.
Дан прямоугольный треугольник АВС
Нужно найти острые углы А и В этого треугольника.
Для этого нужно знать его гипотенузу АВ и катет СВ, затем угол А найти через его синус, угол В - через его косинус.
Нарисуем прямоугольный треугольник АВС. Проведем высоту СК.
Вспомним свойство высоты прямоугольного треугольника.
Высота прямоугольного треугольника, проведённая из вершины прямого угла есть среднее пропорциональное между отрезками гипотенузы, на которые гипотенуза разделена этой высотой.
СК²=АК*КВ
В то же время СК² из треугольника АСК равна по теореме Пифагора
СК²=АС²-АК²
Приравняем эти два выражения, т.к. в обоих случаях они означают равную величину.
АК*КВ=АС²-АК²
Примем АК=х
х*1=(2√3)²-х²
х²+х-12=0
Решим уравнение через дискриминант.
х=3
(второй корень -4 и не годится)
Теперь имеем треугольник, в котором один из катетов равен (2√3),
гипотенуза равна 3+1=4.
Для вычислений длина АС неудобна. Найдем СВ.
СВ²=16-12
СВ=√4=2
Cos В=SinА=1/2
Sin(30°)= 0.5
Cos(60°)=0.5
Угол А=30°
Угол В=60°