Пусть сторона основания ( правильного шестиугольника ) равна а , тогда по свойству шестиугольника его сторона СЕ в два раза меньше его большей диагонали CD => CD = 2a
S бок. пов. = Р осн. × h, где h - высота призмы ( боковое ребро )
180 = 6а × h h = 180 / 6a = 30 / a
В правильной шестиугольной призме все боковые ребра перпендикулярны основаниям. Значит, ∆ KCD - прямоугольный По теореме Пифагора: KD² = KC² + CD² KC² = KD² - CD²
Точка М М = (А+С)/2 = ((-5; -7; 3) + (3; 5; -5))/2 = (-2; -2; -2)/2 = (-1; -1; -1) Вектор ВМ ВМ = М - В = (-1; -1; -1) - (4; 2; -2) = (-5; -3; 1) Вектор АС АС = С - А = (3; 5; -5) - (-5; -7; 3) = (8; 12; -8) Скалярное произведение АС и ВМ АС·ВМ = 8*(-5) + 12*(-3) - 8*1 = - 40 - 36 - 8 = - 84 Модули векторов |АС| = √(8² + 12² + 8²) = √272 = 4√17 |BM| = √(5² + 3² + 1²) = √35 Косинус угла между векторами cos(β) = АС·ВМ/(|АС|*|BM|) = -84/(4√17*√35) = -3√(7/85)
Внутренний угол ∠АМВ треугольника АВМ тупой, и равен arccos(-3√(7/85)) ≈ 149.4° В качестве угла между прямыми принято указывать острый угол 180 - arccos(-3√(7/85)) ≈ 30.6°
вырази
a^2-b^2-c^2=-2bc*cosa
(a^2-b^2-c^2)/-2bc=cosa